

Seehau™

Nohau Monitor (NMon)

March 6, 2003

© 2003 Nohau. All rights reserved worldwide.

Nohau Nohau Monitor March 6, 2003 2 (16)

Contents

1 OVERVIEW... 5

2 USING NMON .. 6

Installing NMon 6

Configuration 7
General NMon Configuration... 7
NPut Configuration .. 7
NGet Configuration.. 8
CPU Configuration .. 8

API – Application Programming Interface 8
NMon Global Data... 8
NMon Functions .. 9
NPut Functions.. 9
NGet Functions ... 9
NLib Functions .. 10
NSrv Functions.. 10
NAssert Macros... 10

Integrating NMon with Run Time Libraries 11
ARM – Integrate with Run Time Libs... 11

Real Time Considerations 11
NMon – Real Time .. 11
NPut – Real Time .. 12
NGet – Real Time.. 12
NAssert – Real Time ... 12

Not Thread Safe 12

Access from Seehau 13
Target Console Window .. 13
Data Window ... 13
Inspect Window... 13
Symbols Required when NPUT_NO_EXEC.. 13

Family Specific Notes 14
ARM - Notes.. 14

3 FILE REFERENCE ... 15

4 KNOWN ISSUES... 16

Nohau Nohau Monitor March 6, 2003 3 (16)

IAR Embedded Workbench 16
Calling printf() & sprintf() from interrupt (IAR).. 16
Optimization .. 16

Nohau Nohau Monitor March 6, 2003 4 (16)

About This Guide
This guide is valid for NMon version 1.0.X.

Nohau Monitor (NMon) allows some of our emulator families to communicate with a target appli-
cation while it is executing. Following capabilities are offered by NMon communication:

•

•

•

•

•

Console I/O – for instance can be used for the function printf() to output text on the Target
Console Window in Seehau, and for instance can be used for the function getc() to capture key-
strokes from the Target Console.

Application error messages displayed in popup windows in Seehau, including support for <as-
sert.h> style macros.

Read and write memory during runtime.

Write to flash (supported by NMon, but not yet directly supported by Seehau.)

NMon consist of a set of source files that files must be linked into the user’s target application to
make this possible. The package is called NMon, as it is the main module of the package.

NMon is based on an API – an end user should not use the underlying communication protocol.

NMon is currently available on:

EMUL-ARM

Nohau Nohau Monitor March 6, 2003 5 (16)

1 OVERVIEW

The figure below shows the Modules in NMon, and how they are connected internally, and how
they communicate with the Seehau GUI. (All blocks starting with ‘N’ are a part of NMon.)

NMon

+ Ini t() : void
+ Exec() : void

NPut

+ Putc(BYTE) : void
+ Puts(const BYTE*) : void
+ Putn(const BYTE*, U_INT16) : void
+ Error(const BYTE*) : void
+ ClrScr() : void
+ ClrEol() : void
+ ClrEop() : void
+ Move(BYTE, BYTE) : void

NGet

+ Getc() : BYTE
+ Gets(BYTE*, unsigned) : void
+ IsEmpty() : BOOL
+ NGet_Clear() : void

NSrv

+ Ini t() : void
+ WantWri te() : BOOL
+ PreWrite() : BYTE
+ Write() : BYTE
+ PostWrite() : BYTE
+ WantRead() : BOOL
+ Read() : BYTE

Seehau

printf()

getc()

Flash Memory

NLib

Memory

assert

NMon – the protocol and command handler, including reading and writing to memory.

NGet – functionality that sends information from the debugger to the target application – typically
for getc() functionality. This means sending keyboard strokes from the Target Console window.

NPut – functionality that receives information from the target application to the debugger – typi-
cally for printf() functionality. This means sending output for displaying in the Target Console
window.

NSrv – user defined services for reading and writing memory – typically used for writing to flash.
The user may need to modify this module.

NLib – a compiler specific module that connects the run time library with the library that comes
with the compiler. Basically it replaces some low level input and output routines so that printf()
and getc() can be used.

Nohau Nohau Monitor March 6, 2003 6 (16)

2 USING NMON

Installing NMon

NMon comes in a zip file called NMon_xxx_yyy.zip located in the Seehau Examples directory,
where:

•

•

•

•

•

•

•

•

xxx is family – i.e. ARM.

yyy is NMon version, where 100 is version 1.0.0.

To install NMon, simply open the zip file, and extract the source files. Our suggestion would be to
extract the files into a directory called NMon in the target application source directory.

Then rename “NSrv_UserAppl.c” to “NSrv_xxx.c” where xxx would be your company, project,
product, etc.

Finally, add files to the makefile, compiler project, etc. The following files must be added (for full
functionality):

NCom_xxx.c – family specific low-level communication.

NGet.c – NGet functionality.

NMon.c – required.

NPut.c – NPut functionality.

NSrv_xxx.c – user defined memory read/write.

And, optionally add:

NLib_xxx.c – compiler specific to enable printf() etc. You may have to create this file your-
self for your specific compiler.

Note

If NPut is not used, the file needs not to be added. However, it will not add to the
size of your executable if NPut is disabled in the configuration.

Nohau Nohau Monitor March 6, 2003 7 (16)

Configuration

The files “NMon_Cfg.h” and “NMon_Cpu.h” allow configuring NMon to suit a specific target ap-
plication, or a specific debug session. All NMon features can be enabled/disabled.

Conditional compilation is used to remove parts that are not used. This means that they do not take
up memory space – neither RAM nor ROM. This is true also when the corresponding module is
compiled and linked into the application.

The following sections list which configuration alternatives that are available for each section.

General NMon Configuration

•

•

•

•

•

•

•

•

•

•

NMON_ALL_ENABLE – enables all commands, i.e. all basic functionality is available.

NSRV_WRITE_ENABLE – enables customer specific memory write, i.e. flash write.

NSRV_READ_ENABLE – enables customer specific memory read.

NMON_BUF_SIZE – size of the buffer to use for customer specific read / writes.

NPut Configuration

NPUT_ENABLE – NPut is disabled if commented out.

NPUT_STORAGE_SIZE – defines how many bytes are used to store characters in the target
to be sent to the debugger. Default = 200. Defining a different size can change the default.

NPUT_ERROR_ENABLE – Enable functions NPut_Error() and macros defined in “NAs-
sert.h”.

NPUT_POSITION_ENABLE – Enable functions for positioning the cursor on the Target
Console, i.e. NPut_Move(), NPut_ClrScr(), NPut_ClrEol() and NPut_ClrEop().

NPUT_LIB_ENABLE – Enable call to function NLib_Init() – to allow initializing the inter-
face to the run time libraries (which is not always needed).

NPUT_NO_EXEC – causes the NMon_Exec() not to be required (in fact it is removed) to
simplify implementation. There are two notes – (1) this option is not available if
NGET_ENABLE or NMON_ALL_ENABLE are defined, (2) output data will not be buffered,
instead it will be directly output(if there is a debugger that receives it).

Nohau Nohau Monitor March 6, 2003 8 (16)

NGet Configuration

NPut is required for NGet to be enabled.

•

•

•

NGET_ENABLE – NGet is disabled if commented out.

NGET_STORAGE_SIZE – defines how many bytes that are used to store received charac-
ters in the target. Default = 100. Defining a different size can change the default.

CPU Configuration

CPU Configuration is made in file “NMon_Cpu.h”.

NMON_CPU – Select which CPU is the closest match for the target system.

API – Application Programming Interface

There are functions internally in NMon that are not included here. Note that most of the functions
may be disabled in the configuration and not be available.

NMon Global Data

The global data is used by the NSrv module when reading, writing, erasing, etc., and will be up-
dated before any NSrv functions is called.

BYTE* NMon_Addr_Curr – Current address for memory access, increment when reading/writing.

BYTE* NMon_Addr_Last – Last (highest) address for memory access.

ADDRESS NMon_Verify_Addr – If verify fails, the address shall be stored here.

BYTE NMon_Buf[NMON_BUF_SIZE] – Buffer for reading/writing data.

Nohau Nohau Monitor March 6, 2003 9 (16)

NMon Functions

void NMon_Init(void) – Initialize NMon, must be called at application startup to make sure that all
NMon modules are initialized.

void NMon_Exec(void) – Execute NMon, needs to be called from low priory function, as quite
long busy waits could be caused.

BOOL NMon_Terminate(void) – Flag to determine if current action be terminated. To be called
from NSrv during lengthy operations.

NPut Functions

void NPut_Putc(BYTE ch) – Display one character in the Target Console.

void NPut_Puts(const BYTE* str) – Display zero terminated string in the Target Console.

void NPut_Putn(const BYTE* str, U_INT16 count) – Display count characters from string in the
Target Console.

void NPut_Error(const BYTE* str) – Output error message in popup window in Seehau and the
Target Console.

void NPut_ClrScr(void) – Clear screen, i.e. Target Console window.

void NPut_ClrEol(void) – Clear end of the current line in the Target Console window.

void NPut_ClrEop(void) – Clear end of the page in the Target Console window, this is the rest of
the current line and all lines below.

void NPut_Move(BYTE x, BYTE y) – Move the cursor in the Target Console window to column x
and row y.

void NPut_Echo(BOOL on) – Turn echo on/off for user keystrokes in the TargetConsole.

NGet Functions

BYTE NGet_Getc(void) – Get one (next) character from the Target Console. Wait until available, if
not already available.

void NGet_Gets(BYTE* pBuf, U_INT16 count) – Get count (next) characters from the Target Con-
sole. Wait until available, if not already available.

BOOL NGet_Available(void) – Flag to determine if there are any characters available. Return
TRUE if available.

void NGet_Clear(void) – Clear all the characters in the input buffer and in the debugger.

Nohau Nohau Monitor March 6, 2003 10 (16)

NLib Functions

void NLib_Init(void) – Initialize the run time libraries interface module. This may be implemented
by the user.

NSrv Functions

Note that the NSrv functions operate on the NMon global data. This means that when writing in
NSrv_Write(), read data from NMon_Buf and write to NMon_Addr_Curr – NMon_Addr_Last.

void NSrv_Init (void) – Initialize user defined memory read/write. Note that this function may be
called at startup and after startup.

BOOL NSrv_WantWrite(void) – Flag to determine if the targets specific code will do the write? If
yes, return TRUE.

BYTE NSrv_Write(void) – Do the actual write.

BOOL NSrv_WantRead(void) – Flag to determine if the targets specific code will do the read? If
yes, return TRUE.

BYTE NSrv_Read(void) – Do the actual read.

NAssert Macros

These are #define MACROS with functionality similar to the classic <assert.h> functionality, and
with some inspiration from the Eiffel Language (precondition and postcondition), plus some ideas
of our own (never_be_here and not_implemented).

However, note that there are no real differences between the macros below (except some take the x
parameter), it’s only a readability difference, and they get different error messages in Seehau.

N_ASSERT(x) – check that the condition ‘x’ is not zero.

N_PRECONDITION(x) – check that the condition ‘x’ is not zero when a function for parameter to
function.

N_POSTCONDITION(x) – check that the condition ‘x’ is not zero when function is about to re-
turn.

N_NEVER_BE_HERE() – never execute this line.

N_NOT_IMPLEMENTED() – this is functionality not yet implemented.

Nohau Nohau Monitor March 6, 2003 11 (16)

Integrating NMon with Run Time Libraries

NMon can be integrated with run time libraries for most compilers if so desired.

ARM – Integrate with Run Time Libs

ARM Compiler - See file NLib_ARM.c.

IAR Compiler - See file NLib_IAR.c.

GNU Compiler - NMon currently does not support the GNU compiler. (This is possible for the
programmer to add.)

Real Time Considerations

NMon – Real Time

Calling NMon_Exec() implements performing actual communication in the normal case (i.e. un-
less NPUT_NO_EXEC defined).

It should be called in a low priority process at a relatively high frequency, as the debugger may
otherwise timeout in its attempt to communicate. The time for timeout in the debugger will nor-
mally be somewhere around 200 ms.

However, the performance in the communication affects the overall performance of Seehau drasti-
cally, when a lot of data is displayed in data windows etc. So it is desired to call as often as possi-
ble, which could normally be done in the Idle loop, or the lowest prioritized task.

Each application will have to determine how to best call NMon.

After receiving a memory read/write command, NMon_Exec() will not return until the operation is
completed. Maximum block size is normally 1000 bytes or so. ARM transfers four bytes per ms,
which give a maximum communication time of 250 ms. Note that memory read/write is entirely
controlled by the user of the debugger – if data windows show small amounts of data, the time to
complete a NMon_Exec() call may be 10 ms.

Note
NMon can be used in dedicated Flash programming applications, in which case
handshaking is not used, and the speed for communication is radically faster.

Finally, there will be very small overhead from NMon_Exec() for NPut and NGet as no busy waits
are used for these two areas of functionality in NMon_Exec().

Nohau Nohau Monitor March 6, 2003 12 (16)

NPut – Real Time

There are two cases for NPut routines – with NPUT_NO_EXEC defined and without.

With NPUT_NO_EXEC defined, data will be communicated before the NPut function returns, i.e.
it will take considerable time.

Without NPUT_NO_EXEC defined, data will be buffered, and return will follow immediately.
(Please note that the N_ENTER_CRITICAL_SECTION describe below may affect timing.)

NGet – Real Time

Data received from the debugger is buffered in the target, so if NGet_Available() returns TRUE, a
subsequent call to NGet_Getc() will return immediately. However,if the data becomes available in
the target, the call to NGet_Getc() will not return until it does.

NAssert – Real Time

Note that NAssert macros will affect real time if the condition is unfulfilled (error). In this case, al-
ready existing NPut data to be flushed, and then the assert information will be stored and flushed.
This could take up to 60 ms. Make sure that nothing dangerous or harmful can happen as a conse-
quence of this delay. This busy wait will also occur when a NAssert macro is called from a high
priority task. The reason being is that we want to get the information out, even if the target applica-
tion is about to crash.

Not Thread Safe

NMon is by default not thread safe (and is not entirely thread safe in all situations). For most situa-
tions, this is probably not a big problem. However, a provision to improve the situation is avail-
able. A macro pair is “called” before and after a critical is entered, which by default is translated to
“nothing” (see file “NMon_Cfg.h”):

•

•

N_ENTER_CRITICAL_SECTION

N_EXIT_CRITICAL_SECTION

By providing implementation for these, some of the elements will be protected – most notably
NPut (i.e. printf() functionality). A normal action would be to disable / enable interrupts. Another
action might be to connect them to a semaphore or similar. NMon guarantees not to have nested
“calls” to these macros. However, the consequence of not being thread-safe is small. Basically,
text in the Target Console may be scrambled.

Note!
NGet (i.e. getc() functionality) cannot easily be made thread safe, so for predictable
results, it should be accessed from one task only, or calls to it need to be protected
somehow. Defining N_ENTER_CRITICAL_SECTION has no affect on NGet.

Nohau Nohau Monitor March 6, 2003 13 (16)

Access from Seehau

Note that communication with NMon will not be very efficient for most systems. It is quite possi-
ble to overload Seehau by using too many data windows and inspects to that utilize the NMon.

Also, note that the NGet in particular is designed for small quantities of data transfers – i.e. key-
board strokes.

Target Console Window

NPut and NGet can be accessed using the Target Console window.

Data Window

The MONITOR data space is available in the Data Windows. Note that when the target is not exe-
cuting, data is read/written as done by default.

Inspect Window

The Inspect Window allows selecting “Update During Runtime” which will cause data to be up-
dated periodically using NMon communication.

Symbols Required when NPUT_NO_EXEC

Symbols are not required for Seehau to be able to communicate with NMon. However, if
NPUT_NO_EXEC is defined, symbols are required. (The reason being is that there is no complete
command handler available in NMon if NPUT_NO_EXEC is defined since there is no execution
that drives it.)

Nohau Nohau Monitor March 6, 2003 14 (16)

Family Specific Notes

ARM - Notes

Both ARM and Thumb mode are supported. The Debug Comms Channel of the ARM core is used
to implement NMon communication for ARM. The instructions to access those are only available
in ARM mode.

No special method need be used to compile NMon for ARM Mode. However, depending in com-
piler used, we know of two methods of compiling for Thumb mode.

1. Select compiler – when there is a separate compiler for ARM and Thumb. Examples in-
clude the ARM and GNU compilers. Compile DCC.c in ARM mode, all other files in
Thumb mode.

2. Function attribute – each function can be specified to be either ARM or Thumb. One ex-
ample is the IAR compiler. For these compilers, the ARMMODE macro should be defined
in DCC.h which should make it automatic to compile the function for Thumb. (Note that
“interworking” need to be enabled to make it automatic.)

Nohau Nohau Monitor March 6, 2003 15 (16)

3 FILE REFERENCE
This is an alphabetical chart that lists of all files in NMon where “Include This” means that the file
very well could be included in a target application source file and “User modifiable” means that
the user should normally modify the file.

File Name Description Usage

DCC.c / DCC.h ARM specific files for low-level DCC access. The sole pur-
pose file is to allow compiling NMon in Thumb mode. The
functions in DCC.c must be executed in ARM mode.

NAssert.h Defines <assert.h> style macros for the target application. Include this

NCom.h Interface to low-level communication routines.

NCom_XXX.c Implementation of low-level communication routines for
specific CPU (and possibly communication method).

User modifiable. Note
that the user may have
to create this file for a
specific compiler.

NMon_CPU.h Configuration related to specific CPU (and hardware). User modifiable.

NDefs.h. Definitions used in NMon – data types etc.

NGet.h / NGet.c Prototypes & implementation of NGet functionality.

NLib_XXX.c Implementation of integration with specific compiler’s run
time library.

NMon.c The main command handler.

NMon.h Prototypes for user functions and global data in NMon.

NMon_Cfg.h Configuration of NMon. User modifiable
NMon_Chk.h Checks that the defined configuration is allowed.

NMon_Cmd.h Commands, parameters, return values and other definitions.

NMon_Cpu.h CPU/Family specific definitions.

NMon_Sys.h General include file for non-user functions.

NPut.h / NPut.c Prototypes & implementation of NPut functionality.
NSrv.h Prototypes for user defined functions of NSrv.

NSrv_UserAppl.c Contains user specific memory read / write. User modifiable.
(Should be renamed.)

Nohau Nohau Monitor March 6, 2003 16 (16)

4 KNOWN ISSUES

IAR Embedded Workbench

Calling printf() & sprintf() from interrupt (IAR)

For some reason, on the ARM IAR compiler, calling printf() or sprintf() from within an interrupt
causes NMon communications to fail from there after. In one sample, we called printf() exactly
once after 10 seconds of good communication, and communication failed after that. Calling other
routines, such as strcpy() had no such affect.

•

•

•

Calling the low level output functions, such as NPut_Puts() caused no problem.

Calling the low level output functions, such as NPut_Puts() caused no problem.

The problem occurred even if printf() was not connected to NPut.

We don’t know why this happens yet, but please beware on other compilers as well.

Optimization

Semihosting (at least read memory) does not seem to work with max size optimization.

	OVERVIEW
	USING NMON
	Installing NMon
	Configuration
	General NMon Configuration
	NPut Configuration
	NGet Configuration
	CPU Configuration

	API – Application Programming Interface
	NMon Global Data
	NMon Functions
	NPut Functions
	NGet Functions
	NLib Functions
	NSrv Functions
	NAssert Macros

	Integrating NMon with Run Time Libraries
	ARM – Integrate with Run Time Libs

	Real Time Considerations
	NMon – Real Time
	NPut – Real Time
	NGet – Real Time
	NAssert – Real Time

	Not Thread Safe
	Access from Seehau
	Target Console Window
	Data Window
	Inspect Window
	Symbols Required when NPUT_NO_EXEC

	Family Specific Notes
	ARM - Notes

	FILE REFERENCE
	KNOWN ISSUES
	IAR Embedded Workbench
	Calling printf() & sprintf() from interrupt (IAR)
	Optimization

