

Getting Started with the Nohau EMUL51-PC Emulator

For the μ PSD32xx Family of Microcontrollers

February 2003

Introduction

The main purpose of this application note is to help a uPSD customer get started debugging with the Nohau Emul51-PC Emulator for the uPSD 3200 microcontroller family from STMicroelectronics.

IMPORTANT: Because the uPSD has programmable decode logic that allows the user to map the Flash and SRAM memory to different addresses in the 8032 address space, it is critical that all Development Tools use the SAME memory map definition. This includes the complier used to generate the code for the uPSD (Keil or some other), the uPSD itself (via PSDSoft Express) and the Nohau emulator.

First, the user must define (select) the memory map model that they would like to use for the intended application. This might be a simple flat memory map (no paging) or may be a more complex memory map with paging or swapping. The design of the memory map is critical to take advantage of the various features of the uPSD such as paging, multi bank flash and swapping flash into XRAM. After the memory map is selected, all the development tools must be configured to use the same memory map.

For demonstration purposes, all of the configuration information in this application note will be based on the design example given in the application note AN1560. Please see AN1560 for more details. A summary of the memory map in AN1560 is:

Configuration Setup for Keil uVision2

After the memory map is defined, the user must describe the memory map to the compiler or IDE environment. This must be done BEFORE any code can be compiled or linked by the programming tools. How and where you map the code space (Flash) and where you locate the XRAM (SRAM) affects how code is generated for the 8032 environment. In addition, if you are going to use paging, then this must be configured in the compiler to match your memory map definition in order for it to work properly.

The following is an example for setting up the XRAM address location for the Keil IDE environment. The 'Options for Target' for the Keil complier needs to be setup up as follow:

tions for Target '	USB_Test'	?
farget Output Lis	ting C51 A51 BL51 Locate BL51 Misc Debug	
ST Microelectronics	uPSD3234A	
	Xtal (MHz) 36.0	
Memory Medel		
Code Bom Size	Large: 64K program	
Operating system:	None	
- Off-chip Code mer	Nory Start: Size: Off-chip Xdata memory Start: Size: Ram 0x200	rt: Size: 0 0x2000
	Eprom	-
	Eprom	
Code Banking Banks: 8	Start: End: Tail memory type support Bank Area: 0x8000 0xFFFF Save address extension SFR in interrup	ale.
	OK Cancel Defaults	

Note the Off-chip Xdata memory RAM starting address is set to 0x2000 and it's size is set to 0x2000 (8KB). It is setup this way because the example in AN1560 mapped the uPSD's SRAM to this location. Also note that the Code Banking is checked, with Banks set to 8. This example has the main flash setup to use 8 pages, with address range of 0x8000 - 0xFFFF for each page. Based on the value in the page register (0-7), a sector of the main flash will be mapped to code space 8000 to FFFF.

Configuration Setup for uPSD

IMPORTANT: The memory map that you defined must be configured into the uPSD using the PSDSoft Express configuration tool provided by STMicroelectronics. Every uPSD must be configured before the device will work. There is NO default memory map for the uPSD.

The uPSD features a programmable decode PLD that is used to decode and map the Flash Sectors, SRAM and I/O space into the 8032 address space. Recall that the 8032 has a separate Code space of 64KB and a separate XDATA space of 64KB.

The four memory blocks (Main flash, Boot flash, SRAM, and the CSIOP Space) of the uPSD are external to the 8032 core and are selected when 8032 addresses are presented to the uPSD's Decode PLD. Using PSDsoft Express, the user will define the memory map that they have selected using the windows based GUI. This configuration information will be used to automatically program the Decode PLD in the uPSD. The user will define items such as the starting address of each flash segment, where the SRAM is located and the page register configuration. The memory map must match the address locations used in source code. For example, the I/O space register (CSIOP) is used to point to a block of configuration registers inside the uPSD. The CSIOP base address is assigned to address 0x200 in the source code, and has a length of 0x100 (256 bytes). In the PSDsoft Express, we need to assign CSIOP to this address range so that the source code will be able to access the uPSD's registers starting at address 200 in the XDATA address space. The same is true for the uPSD's SRAM chip select (RS0), which should be mapped to 0x2000 - 0x3FFF. FS0-7 are the main flash sectors, CSBoot0-3 are the boot sectors. The memory map should look like the following:

Label	Page Bit	start	end	Mem
y=page(don't	care)			
fs0	Obyyyyy000	0x8000	OxFFFF	F
fs1	Obyyyyy001	0x8000	OxFFFF	F
fs2	Obyyyyy010	0x8000	OxFFFF	F
fs3	Obyyyyy011	0x8000	OxFFFF	F
fs4	Obyyyyy100	0x8000	OxFFFF	F
fs5	Obyyyyy101	0x8000	OxFFFF	F
fs6	Obyyyyy110	0x8000	OxFFFF	F
fs7	Obyyyyy111	0x8000	OxFFFF	F
csbootO	Орададара	0x0000	Ox1FFF	F
csboot1	Орададара	0x2000	Ox3FFF	F
csboot2	Орададара	0x4000	Ox5FFF	F
csboot3	Орададара	0x6000	Ox7FFF	F
rsO	Оралалар	0x2000	Ox3FFF	v
csiop	Орададара	0x0200	Ox02FF	v

Nohau Emulator Environment and Configuration Setup

The following is an example configuration for the Noahu emulator when using the uPSD. The following screens show how to define and setup the memory map for the emulator as well as disable the watchdog, etc.

Load Code 🔽 Symbols	Integer Byte Order	Float Byte Order
 Clear Symbol Table Before Load Load Code at Startup? 	MSB First	MSB First
Save On Exit C Auto Save Query to Save C No Save	Miscellaneous Hints? 50 Max. C Use Startup Dial	command History
Background Bit Map	EHAU51\bitmaps\Noha	uSlant.bmp

Exe Path:	C:WOHAU/SEEHAU51/	
oad Path:	C:\Keil\eeemulation\dk3200_1_c\	Ext:
Sour	ce Paths:	Source Exts:
4		
-		.c .asm .cpp

Started Enable	C:WOHAU\SEEHAU51\macro\Started.bas	
Stopped Enable	C:WOHAU\SEEHAU51\macro\Stopped.bas	
Trace Started Enable	C: WOHAU\SEEHAU51 \macro\TraceStarted.ba	.et.
Trace Stopped Enable	C:WOHAU\SEEHAU51\macro\TraceStopped.k	
Code Loaded Enable	C:WOHAU\SEEHAU51\macro\CodeLoaded.ba	
C Quiet Mode		

The Emulator's Configuration should be setup up as:

W Conrig Misc Setup Ma	ap Config Bank Switch	ing Logic Breakpoint Setup BP Setup
rocessor	Port Address	Emulator Type
OD-uPSD3200-PC	T10 Clock(MHz) 16	EA256
Miscellaneous BrkPt Replacement Mask Interrupt on step	P3.7 C Input C Output	P3.6 C Input C Dutput
	se reomar	(** Normai
Enable Trace of PAGE ar	nd VM registers	
Enable Trace of PAGE ar	nd VM registers	
Enable Trace of PAGE ar	nd VM registers	, vormar

The default address range for the Emulator board is 110h - 11Fh. The emulator type is set to EA256, which means it supports bank switch for up to 256K memory. P3.6 and P3.7 are the two port pins that can be emulated by the pod and be used as the read and write signals, or can be used as normal port pins when set to Normal. Please see page 73 of the EMUL51-PC User Guide for more information on how to use them as read/write signals. The Enable Trace of Page and VM registers when checked, will allow the user to get those registers information displayed in the trace memory. The figure which is included under the Other Useful Features section, shows the Page Register content as well as the content of the VM register, i.e. if the code is in the Main Flash (MF), Boot Flash (BF), or SRAM (SR).

Emulator Configuration		
Hdw Config Misc Setup Ma	p Config Bank Switching Logic Breakpoint Setup BP Setup	
✓ Reset chip after load file	Override at Reset	01 01 01 01 01 01 01 00
<u>DK</u> Apply		

Emulator Co	nfiguration				
Hdw Config	Misc Setup	Map Config	Bank Switching Logic	Breakpoint Setup	BP Setup
Range	Ma	p to Target			
-	Code	xData			
0000:0FF	F 🔽				
1000:1FF	F	~			
2000:2FF	F	~			
3000:3FF	F	~			
4000:4FF	F	~			
5000:5FF	F	~			
6000:6FF	F	~			
7000:7FF	F	~			
8000:8FF	F 🗸	~			
9000:9FF	F 🔽	~			
A000:AFF	F	~			
B000:BFF	F	~			
COOO:CFF	F	~			
D000:DFF	F 🔽	~			
E000:EFF	F	~			
FOOO:FFF	F	~			
			war f		
	Lnec		KAIL		
	Clea	r All I Clea			
			Contractor (
					-
1 OK				Defeat	
μv	AP		ancer Help	<u>H</u> erresh	
		-12			

Click on the Check All button to map all the address spaces to the PSD, uPSD's PLD will perform the memory mapping for the MCU.

Emulator Config	guration	- 22	,				
Hdw Config Mi	isc Setup Map Confi	g Bank Switching	Logic	Breakpo	int Setup BP	Setup	
Bank Area: Range: 8	000	to [fff	_	🔽 Er	able Banking		
Control and Sta Address:	tus Byte: 90	Mask: 0			R 🗾		
Shadow Byte:	NONE 💌	Bank Number	8	Bank#	Pattern	-	
Address:	90	I ranslation:		0	0		
	100	Enable Table	Г	1	1		
		Use SY1	Г	2	2		
				3	3		
				4	4		
				5	0		
				6	0		
				7	0		
				8	0	•	
<u>D</u> K	Apply	<u>Cancel</u>	<u>H</u> elp		<u>B</u> efresh		

Please consult the The EMUL51-PC User Guide on how to setup the Bank Switch configuration. The BSW jumper block for the POD-ST3000 should be setup the same as the BM jumpers which is described in the EMUL51-PC User's Guide, page 25.

Emulator Configuration				
Hdw Config Misc Setup	Map Config	Bank Switching Logic	Breakpoint Setup	BP Setup
F Break On				
Address Only	C SYC	l and Address		
C SY0 Only	🔿 SYO) or Address		
SY0 Level				
C High	Low	(
Break on Cycle			4	
Opcode Fetch				
🗖 Write XData				
🗖 Read XData				
			1	
	0	r.	î i	-1
	oly 🖸	ancel <u>H</u> elp	<u>R</u> efresh	

IMPORTANT:

Once the emulator's environment and configuration menus are setup, we also need to turn off the uPSD's Watchdog Timer since it will interfere with the emulator's operation. To turn off the Watchdog, place the cursor in the Reg_1 display window, then right click the mouse button, a menu with all the functions supported by the emulator for the register editing will appear, select SFR, then highlight WDKEY then click "Add to".

Reg_	
PC	0000
SP	07
ACC	00
В	00
DPTR	0000
RO	5D
R1	00
R2	00
R3	08
R4	00
R5	01
R6	00
R7	02
PSW	00
CAF	000
RS	00
0-P	000
VM	OC
Page	00
CYCLE	0000000
WDKEY	55

To permanently disable the Watchdog on reset, we need to setup the attribute for WDKEY register. To do so, click on the WDKEY register, then right click the mouse button, select "Attribute". Setup the WDKEY register attribute menu as follows:

Change/Sho	w Register Attribu	tes(WDKEY)		×
<u>N</u> ame	WDKEY	i		
Address	0x0000004E			
Space	SFR	i		
Style	Hexadecimal	l		
Si <u>z</u> e(in bits)	8	Bit O <u>f</u> fset	0	
☑ <u>E</u> nable R	eset Value	Reset <u>V</u> alue	0x0055	
Co <u>m</u> ment	kill my dog will you!			
	<u>k</u>	Cano	cel <u>H</u> elp]

The emulator is now ready to emulate. The emulator is operated by the Seehau user interface. Seehau is a high-level language user interface that allows you to do many useful tasks, such as load, run, single step programs based on C or Assembly languages.

The Getting Started Manual that comes with the Nohau Emulator Installation software CD for classic 8051 also applies to this emulator. The manual gives detailed information on how to use and setup certain features of the emulator, such as how to set break points, set triggers and view traces, modify and view memory contents including SFRs. Also please don't forget to use the HELP button, it has much helpful information on how to run the various emulator commands.

Emulator POD - Jumpers and Headers Setup

The jumpers and headers setup for the emulator pod is attached in the Appendix A. This document is taken from the Nohau's website at: <u>http://www.nohau.com</u>

Also from the same website, you can find the uPSD3200-POD's pin out and dimensions. It is included in the Appendix B of this document for your convince.

Other Useful Features

To edit the Source Code window, such as go to a certain address, or check where the break point is etc. can be accomplished by placing the cursor in the Source_1 window then right click the mouse button, all the command support by the emulator for source window editing will appear. The same is true when you place the cursor in the Trace window, then right click the mouse button for the commands that support all the trace window editing. The Trace window below shows the code is executed from the Main Flash memory page three, and the C under MF in the header, means page 3 of the Main Flash is designate as code space. The Data_1 window below shows the data content of page 3 at memory location 0x8011.

Trace_1							🗙 🗱 Data_1																	
Frame	Address	PAGE	1	MF	BF	SR	Data	Instr.			Symbol		008011	0	1	2	3	4	5	6	7	8	9	A 🔺
-4	SFC	0000 00	11	C	C	D	22	RET			printfLCD END		008011	7 B	FF	7A	0E	79	CB	90	20	1A	E5	EE
-3	5FD	0000 00	011	с	с	D	78						008010	FO	A3	E5	E8	FO	Å3	E5	EA	FO	90	20
-2	5FD	0000 00	11	С	С	D	78						008027	5E	EO	90	20	1D	FO	12	04	3D	90	20
-1	5FD	0000 00	111	с	c	D	78						_008032	16	74	FF	FO	12	OF	8D	90	20	16	EO
0	8011	0000 00	11	C	C	D	7BFF	MOV	R3.#FF				008031	14	FU	EU	D3	94	00	50	F1	22	FF	FF
1	8012	0000 00	011	с	c	D	FF		A STATE OF A STATE OF A				008048	FF	FF	FF	FF	FF	FF	P.P.	FF	FF	FF	FF
2	8013	0000 00	11	c	c	D	TAOE	MOV	R2,#OE				008053	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF
3	8014	0000 00	11	с	С	D	OE						008069	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF -
												-			1.2	2002211								Ţ
•			• 🗘 🗘 0x008011									1												
TRACE ONLY [got frames: 262143(:262140:3), Trigged.Loop Cnt:0, Trig Delay:131063, Overflowed.State. 000000										1.	CODE(Write	ble, N	on-rea	adable	at run	time)	HE>	<8 0	×0080	11				

Appendix A

This document covers both the POD-ST3000 and the EA256-BSW emulator board. This system is designed to emulate the ST-Microelectronics μ PSD3200 microcontroller.

POD-ST3000 Jumpers & Headers

POD board information and setup:

The pod has three LEDs, named MON, EMUL, RES:

- MON is red, and means that the system is in monitor mode. In monitor mode, the processor is executing code that is internal to the emulator. This code is not user code, and is used to communicate with the host PC, to set up breakpoints, etc.
- EMUL is green, and means that the system is in emulation mode. In emulation mode, the processor is executing the user's code from the emulation RAM or the targets PROM depending on the mapping in the emulator software.
- RES is red, and means that the microcontroller RESET pin is LOW (active state).

This pod is equipped with a micro "DIP" switch that is labeled with **PSD ADR** you must set this jumper to match the address of the **CSIOP** that you have configured your project for, (sets the upper byte of the address).

The board has three jumpers for power and crystal connection to the emulation chip:

- PWR is used to select power for the processor. Power should be supplied from the emulator and the jumper should be in either the **5v** or **3v** position depending on the type of microcontroller installed in the pod. With the power jumper in the left two pins, **EXT** position, then the power will come from the target system. The other jumper is for the PSD logic Vcc supply, both of these jumpers should be set to the same setting.
- XTAL determines if the crystal or clock is taken from the target system or the on pod crystal. The jumpers should be in the top two positions for crystal to be supplied from the pod or the **INT** position. If the jumpers are in lower positions, **EXT** position, then the crystal/clock is supplied from the target system.

If you use an external clock, note that XTAL1 is an input and XTAL2 is left open.

All jumpers for PWR should be in the **5v** or **3v** position depending on the type of PSD device that you have installed and XTAL should be in the **INT**, "internal" position when no target is connected to the pod board.

RST connects the target RESET pin to the emulator. If the target system has a watchdog, it will probably interfere with the emulation and **RST** should then be removed.

The **USB** jumper must be installed in you are going to run the pod in **stand-alone** mode without a target otherwise the USB controller will keep resetting the micro, making the emulator unusable. Remove this jumper if you are installed on a target system that is designed to use the USB interface, otherwise leave the jumper installed.

Some other headers are labeled P4 (Port 4), PB (Port B), and PA (Port A) are available for monitoring via oscilloscope or other devices.

JP4 – is for future design operations to enable JTAG programming from the Emulator. This jumper should remain out.

BSW – header is for monitoring the bank bits for the FS0 ... FS8 regions, or they can be connected to the PGR bits on the connector next to them if you wish to emulate the PSD portion of the memory using emulation RAM.

PGR – header for bits 0 through 3 of the PAGE register.

 $\overline{ANB / B1}$ and are to select between the bank switch bit 1 or the TRACE non-latched output signal when condition that is setup occurs.

FLF / B0 and are to select between the bank switch bit 1 or the TRACE latched output signal when condition that is setup occurs.

EM – this pin goes low when you start the emulator running code at full speed.

SY0 and SY1 – these pins are general purpose inputs to the emulator and trace logic, and can be used to trigger on or break emulation.

Emulator board information and setup:

The emulation of the ST-Microelectronics μ PSD3200 uses the EMUL51-PC/EA256-BSW emulator board. The figure below shows the correct settings for the emulator board, using default I/O address of 110, to correctly work with the POD-ST3000.

The emulator board must have COM 1.51 and be using software with a build date of 10/18/02 or newer to work correctly.

Appendix **B**

