
www.icetech.com  •  support@icetech.com  •  Tel: 800.686.6428  •  Int: 650.375.0409

68HC12 Trace Information 

What Is a Trace and How Does It Help Debug a
Microcontroller System?

A trace is an optional part of an emulator system that supplies advanced debugging capabilities
that include:

• Recording the execution of instructions, the bus activity of the microcontroller system
under development, and displaying it in an intuitive way for debugging purposes; the
executed instruction are displayed disassembled, the address and data are arranged in
fields, and so on.

• Recording only a small portion of the bus activity and/or instruction execution, such as a
range of addresses, a range of data, and a specific type of bus cycle that you set. This
function is called filtering and displays only the information that is of interest at any given
point (for example, to allow solving a specific software bug in a specific function).

• Setting complex conditions that identify very specific events caused by the microcontroller
system under development. These conditions can include a sequence of several events,
and/or a repeat of a certain event for a number of times, which can then cause the trace to
stop recording, and for the recorded data to be displayed. This then can or can not also
cause the microcontroller to break emulation based on the user settings which makes it
behave like a sophisticated breakpoint. This function is called triggering.

• Recording timestamp information for every recorded frame. This allows you to check
the timing of the microcontroller system, measure how long it takes to execute certain
functions, and so on.

• Recording code coverage information that specifies which instructions were executed at
least one time, and which were not. This code coverage function is useful for late
debugging stages, in order to make sure all the instructions get executed.

The HC12 Trace is a very powerful tool that supplies support to software and hardware devel-
opment for all the existing (and future) 68HC12 derivatives. This document explains how to
use the HC12 Trace and how to maximize its advanced capabilities in order to simplify the de-
bugging, make it easier, and minimize the development time spent to find elusive bugs.

Administrator
icelogo



©  ICE Technology                            68HC12 Trace Information 2

Features

• The trace is a small 3.1-inch by 4-inch card that you plug on top of any HC12
emulator board.

• Supports all HC12 emulator boards and all HC12 derivatives.

• Records all HC12 memory and SFR accesses, external and internal to the HC12
microcontroller, in all cases.

• Supplies reliable triggering and filtering of executed instructions and data accesses.
Triggering and filtering can be configured to happen only when an instruction is executed,
and not when it is fetched. This feature is supported using reconstruction of the internal
HC12 instruction queue, and instruction decoder in the trace logic.

• The trace size is 128K frames (records).

• Records up to 24 miscellaneous signals in addition to the address, data and control signal.

• Records up to eight additional MSB address lines (A23-A16) for derivatives that have
more than 16 address signals.

• Records up to eight chip-select signals for derivatives that have chip-selects.

• Forty-four bits of timestamp information is recorded, in resolution down to 40
nanoseconds, allowing the timestamp counter to run without overflowing for more
than a week.

• Records and displays frames in an execution oriented manner. This means that it can
record and present the executed instructions and accessed data in the order they occur
without having to record the fetched (unexecuted instructions). (Each recorded and
displayed instruction is followed immediately by the Data read and writes which are caused
by this instruction.) This makes the trace display more useful for software debugging.

• The trace can record and display raw bus frames, including instruction fetches data read
and write, free cycles, and so on. This mode is more useful for hardware debugging.

• The trace can be stopped, reconfigured and started, as many times as required, without
stopping the user program or interrupting its running at full speed during these starts, stops,
and reconfigurations of the trace.

• The trace is optional.



©   ICE Technology                  68HC12 Trace Information 3

How to Control and Display the Trace Content Using the
Emulator User Interface

The HC12 Trace has two main windows in the emulator user interface software (Seehau):

Trace Configuration Window

Click on Config , and select Trace to open this window. From this window, you can configure
the HC12 Trace.

Trace Display Window

Click on the Trace icon in the control bar to open this window. This window displays the
information that is recorded in the trace.

Details on how to use these two windows to utilize the trace are described later.

Information Recorded in the Trace
The information recorded in the trace memory is arranged into frames. The HC12 Trace (part
number EMUL12-PC/TR128-16) can store up to 128K frames. This frame memory functions
as a circular buffer, when fills up, starts overwriting its oldest frames.

The following fields are recorded for each trace frame:

• Sixteen bits for address information that is recorded from the HC12 address bus.

• Sixteen bits for data information that is recorded from the HC12 data bus.

• Eight bits for control bus information that specifies the type of each frame (instruction
execution, data read, data write, how wide the data is, and so on).

• Up to 24 miscellaneous signals, which are arranged into three 8-bit fields (Misc A, Misc B
and Misc C).

• Up to 8 additional MSB address bits, used for some HC12 derivatives that use more than
16 address signals.

• Up to eight chip-select signals that are used for some HC12 derivatives, and generate chip-
select signals.

• Forty-four bits for timestamp information, in resolution down to 40 nanoseconds that
allows the timestamp counter to run without overflowing for more than a week.

• Indication for the memory source that the recorded frame originated from, for example,
internal HC12 memory, external emulation memory on the emulator board, or external
memory on the target.



©   ICE Technology                     68HC12 Trace Information 4

Timestamp Information

Each recorded frame contains 44 bits of timestamp information. This 44-bit timestamp is gen-
erated by a 44-bit counter in the trace. The clock used for the timestamp counter is a 25-MHz
signal generated on the pod that can be pre-scaled by any factor in the range 1-255. The pre-
scale value for the timestamp counter can be configured under the Trace Setup tab in the
Trace Configuration window, in the Timestamp Prescaler box.

The 25-MHz clock used for the timestamp is always available, and its rate is not affected by
behavior of the HC12 microcontroller (such as ECLK stretch, halt of the ECLK when HC12
stop power-down mode becomes active, and HC12 clock rate changes). It also supplies a time
resolution of 40 nanoseconds. Thus it is ideal to use as the timestamp clock, to supply reliable
timing information.

Additional MSB Address Bits, Chip-Selects and Miscellaneous Signals

The 24 miscellaneous signals are arranged into three 8-bit fields: Misc A, Misc B, and Misc C.
They are sampled from the three trace connectors.

One 8-bit probe set, that is used with any one of these three miscellaneous connectors to sam-
ple signals from the target or the pod, is supplied with the trace kit. Additional probe sets can
be ordered separately from Nohau (part number EZ/8 BIT PROBE SET). Two of these three
miscellaneous fields, Misc.-A and Misc.-B, can also be used to record up to eight additional
MSB address bits and up to eight chip-select signals that can be used for some HC12 deriva-
tives. These additional MSB address bits and chip-select signals are routed to the trace directly
from the emulator board through the trace connectors, and do not require additional wires to
connect them.

Each Misc A bit can be configured to record the data on the Misc.-A connector, or an MSB
address signal that is generated by the HC12 microcontroller on the pod. This selection is
made in the Misc. A tab in the Trace Configuration window.

Similarly, each Misc B bit can be configured to record the data on the Misc B connector, or a
chip-select signal that is generated by the HC12 microcontroller on the emulator board. This
selection is made in the Misc. B tab in the Trace Configuration window.

The Misc C field does not share its functionality, and is dedicated for use as a general-purpose
miscellaneous sample port that records the data on the Misc C connector.

The 24 miscellaneous signals, when configured to sample the data from the Misc A, Misc B
and Misc C connectors, can each be individually configured on a bit-by-bit basis for the edge
that will be used to sample the signals on the miscellaneous connectors.

The selections are:

• On ECLK falling edge

• After ECLK fall (approximately 30 nanoseconds after ECLK falling edge)



©   ICE Technology               68HC12 Trace Information 5

• On ECLK rising edge

• After ECLK rise (approximately 30 nanoseconds after ECLK rising edge)

These selections are configured in the Misc. A, Misc. B and Misc. C tabs in the Trace Con-
figuration window.

Global Filtering

The HC12 Trace has global filtering functionality that allows it to be configured to determine
what type of bus cycles and states are enabled to be recorded in the trace memory, and be dis-
played in the Trace Display window. Global filtering is configured by selecting the check
boxes under the Includes for Triggers and Filter field in the Trace Setup tab in the Trace
Configuration window. The check boxes configuring the global filtering are suffixed as Filter,
not as Trigger.

The selections are:

Instruction Execution enables recording and displaying instructions as they are executed.
(This does not record opcode fetches or any instructions which are fetched but not executed.)

CPU Writes enable recording write cycles caused by the HC12 user program.

CPU External Reads enable recording external HC12 read cycles caused by the HC12 user
program.

CPU Internal Reads enable recording internal HC12 read cycles from internal HC12 re-
sources caused by the HC12 user program. The distinction between external and internal reads
is made because on many HC12 derivatives, internal read cycles and free cycles cannot be dis-
tinguished from each other.

BDM Reads and Writes enable recording reads and writes that are not caused by the user
program but by the HC12 BDM interface. BDM reads happen whenever there is an open Run
Time Data window. BDM writes happen whenever you are writing to the HC12 memory dur-
ing emulation (when user program is running), from an open Run Time Data window, or an
open Shadow window.

Interrupt Vectors enable recording interrupt vector read cycles. Identifying these cycles de-
pend on correct cycle type information output by the HC12 micro-controller.

Fetch Cycles enable recording opcode fetch cycles caused by the user program.

Free Cycles enable recording HC12 free cycles. These are cycles during which internal op-
erations are made by the HC12 controller but no actual bus activity. Although during free cy-
cles there is no actual bus activity made by the HC12 controller, to the emulator the HC12
displays information as if there is a read cycle in progress. There is no reliable way to distin-
guish all free cycles from real read cycles, therefore depending on the HC12 derivative used,
some (or even all) free cycles can be classified by the trace as read cycles. For derivatives that



©   ICE Technology                68HC12 Trace Information 6

have a DBE control signal, only free cycle which look as internal HC12 read cycles will
be classified as read cycles, while the other free cycles will be correctly identified. Those
correctly identified free cycles can be displayed under this selection.

Wait Power-Down State enables recording a wait power-down indication frame each time a
wait power-down mode is initiated by the user program.

Stop Power-Down State enables recording a stop power-down indication frame each time a
stop power-Down mode, is initiated by the user program.

Reset State enables recording a reset indication frame each time the HC12 reset becomes
active when the user program is running (for example, when an internal watchdog reset
occurs, or a target reset occurs).

Reset-Transition State enables recording a Reset-Transition indication frame each time
Reset-Transition becomes active after reset. (For details about Reset-Transition, refer to the
emulator manual.)

Error State enables recording an error indication frame each time the error mode becomes
active when performing illegal write to some internal SFR register. (For details about the error
mode, refer to the emulator manual.)

All the frames listed previously are divided to three main groups:

• Instruction execution frames

• Raw bus cycles frames (bus cycles information that is recorded directly from the
HC12 bus)

• State frames (indicate on states that became active in the emulator and HC12 system)

The instruction execution information and the raw bus cycle information is also subjected to
further filtering using the filtering system. (For details look under the description for the fol-
lowing filtering system.)

Fields Displayed in the Trace Display Window

You can customize the Trace Display window to display only the necessary information.

Frame

This field displays the frame number for each displayed frame.

Frame 0 is the frame during which the trigger, which caused the trace to stop, occurred. Thus
scrolling to frame 0, will always take you to the frame that triggered the trace (or to the next
frame which was recorded, in case the trigger frame was filtered out). The frames, which were
recorded before the trigger occurred, are numbered with negative frame numbers. The frames
which were recorded after the trigger occurred, are numbered with positive frame numbers.



©   ICE Technology              68HC12 Trace Information 7

Address

This field displays the address that was used by the HC12 microcontroller for all the instruc-
tion execution and raw bus cycles frames.

Timestamp

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Timestamp.

The timestamp field displays the timestamp information in one of the following formats:

• Absolute Timestamp Clock Counts (referred as Absolute cycle)

• Relative Timestamp Clock Count to the previous displayed frame (referred to as Relative
cycle)

• Absolute Timestamp in time units (referred to as Absolute time)

• Relative Timestamp in time units to the previous displayed frame (referred to as Relative
time)

To display the format of the timestamp field, right-click in the Trace window and manipulate
the Relative Timestamp and Convert Cycles to Time menu items. In order to perform time
measurements you can also select the absolute time display, then scroll to a specific frame,
right-click in the Trace window, and then select Zero Time at Cursor. This assigns time 0 to
the specified frame, and measures the time of the other frames relative to the specified frame.
Thus, you can, for example, measure how long it took to execute a certain function by assign-
ing time 0 to the first instruction of a function, and then scrolling to the RTS instruction of this
function.

Miscellaneous

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Misc. Data.

This field displays the 24 miscellaneous signals sampled from the Misc A, Misc B and Misc C
connectors on the trace board. All the Misc A and Misc B bits, which are used to sample addi-
tional address and chip-select signals, are displayed as zeros in this field.

Pod Pins

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Pod Pins.

This field displays the active chip-select signal for the current frame. (This field has meaning
only when some of the Misc B bits are configured to record chip-select signals.)



©   ICE Technology                                 68HC12 Trace Information 8

Opcode

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Opcode.

This field displays the opcode bytes of executed instructions and the data read or written for
displayed raw bus cycles (CPU reads, writes, and so on).

Status

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Status.

The status field displays the memory source that the displayed memory access was accessing:
internal HC12 memory source, external emulation memory on the emulator board, or external
memory on the target.

Instruction

The instruction field displays the disassembled instructions and the memory access type (read,
write, fetch, word, byte, and so on).

Symbol

This field can be enabled or disabled by right-clicking in the Trace window, and selecting
Show Symbol.

The symbol field displays symbols that are associated with displayed instructions and data
cycles when a symbol is available for the displayed frame.

Types of Cycles for Triggering

The HC12 Trace can be configured to determine what type of bus cycles can be used in the
triggering logic. This is configured by selecting the check boxes under the Includes for Trig-
gers and Filter field in the Trace Setup tab in the Trace Configuration window. The check
boxes configuring this functionality are suffixed as Trigger and not as Filter.

The following selections are:

Instruction Execution enables using instruction execution in the triggering logic. (This
enables triggering on the instruction only when it is executed and not when it is fetched, but
not executed.)

CPU Writes enable using CPU write cycles caused by the HC12 user program in the trigger-
ing logic.

CPU External Reads enable using external HC12 read cycles caused by the HC12 user pro-
gram in the triggering logic.



©   ICE Technology                    68HC12 Trace Information 9

CPU Internal Reads enable using internal HC12 read cycles caused by the HC12 user pro-
gram in the triggering logic. (The distinction between external and internal reads is made be-
cause on many HC12 derivative internal read cycles and free cycles cannot be distinguished
from each other.)

BDM Reads and Writes enable using reads and writes that are not caused by the user pro-
gram, but by the HC12 BDM interface in the triggering logic. BDM reads happen when there
is an open Run Time Data window. BDM writes happen when you write to the HC12 memory
during emulation (when user program is running), from an open Run Time Data window, or an
open Shadow window.

Interrupt Vectors enable using interrupt vector read cycles in the triggering logic. Identifying
these cycles depend on correct cycle type information output by the HC12 microcontroller.

Fetch Cycles enable using opcode fetch cycles caused by the user program in the triggering
logic.

Free Cycles enable using HC12 free cycles. These are cycles during which internal operations
are made by the HC12 controller but no actual bus activity in the triggering logic. Although
during free cycles there is no actual bus activity made by the HC12 controller, to the emulator
the HC12 displays information as if there is a read cycle in progress. There is no reliable way
to distinguish all free cycles from real read cycles, therefore, depending on the HC12 deriva-
tive used, some (or even all) free cycles can be classified by the trace as read cycles. For de-
rivatives which have a DBE control signal, only free cycle which look as internal HC12 read
cycles will be classified as read cycles, while the other free cycles will be correctly identified.
Those correctly identified free cycles can be used in the triggering logic here.

The instruction execution information and the described raw bus cycles, when enabled by
these eight global triggering enable check boxes, can be used in the triggering logic to cause
the trace to stop and show the recorded frames, and to break emulation (stop the user program)
as specified by the user. (For details look under the following description for the triggering
system.)

Triggering and Filtering Systems

Trigger Mode

There are two trigger modes: opcode and data.

You can select the active trigger mode under Trigger Mode in the Trace Setup tab in the
Trace Configuration window, by clicking on one of the Opcode or Data option buttons.

In opcode mode, the programmed triggers and filter ranges under the Trigger1, Trigger2,
Trigger3 and Filter tabs help you to distinguish between:

• Opcodes (Execution and Fetch)

• Data Read and Write



©   ICE Technology                     68HC12 Trace Information 10

• Both Opcodes (Execution and Fetch) and Data Read and Write

• None

In data mode, the programmed triggers and filter ranges under the Trigger1, Trigger2,
Trigger3 and Filter tabs help you distinguish between:

• Data Read

• Data Write

• Both Data Read and Data Write

• None

Note: In data mode it is not possible to trigger on or filter instruction execution.

The enabled cycles by the Includes for Triggers and Filter check box list (in the Trace Setup
tab in the Trace Configuration window), are classified for the triggering and filtering purposes
in order to trigger and filter correctly in both opcode and data mode to the following three
categories:

Opcode includes instruction execution information and opcode fetch cycles.

Data Read includes CPU external read cycles, CPU internal read cycles, BDM read cycles,
interrupt vector cycles, and free cycles.

Data Write includes CPU write cycles and BDM write cycles.

Thus, for example, selecting data mode and configuring a trigger or filter range for data read,
enables all the enabled cycles of group B to participate in the particular trigger or filter logic.

Filter Mode

There are two filter modes: normal and window.

You can select the active filter mode under Filter Mode in the Trace Setup tab in the Trace
Configuration window, by clicking on one of the Normal or Window option buttons.

Normal Filter Mode

Trigger 1, Trigger 2 and Trigger 3 function as three conditions which should be recognized se-
quentially (Trigger 1, then Trigger 2, then Trigger 3) in order for a trigger to be recognized by
the trace. To enable all of these three sequential conditions, select all three check boxes under
the Active Triggers field (in the Trace Setup tab in the Trace Configuration window). To en-
able only one condition, select Trigger 1, and clear Trigger 2 and Trigger 3. In this mode the
last enabled trigger can also be assigned a repeat counter that causes the trace to look for this
last trigger a number of times before a trigger is recognized. The value for this repeat counter
is configured in the Last Trig Repeat Count field, and can be assigned any value between 1
and 65536.



©   ICE Technology                     68HC12 Trace Information 11

Window Filter Mode

Trigger 1 starts recording, Trigger 2 stops recording, and Trigger 3 is used as a trigger. In this
mode, each time Trigger 1 is met, the trace enables recording new frames as filtered by the
filtering system. Each time Trigger 2 is met, the trace disables recording new frames. These
occurrences of Trigger 1 and Trigger 2 can enable and disable trace recording an unlimited
number of times. In this mode, Trigger 3 functions as a regular trigger, which can cause the
trace to stop recording and display the recorded frames. In this mode Trigger 3 can also be
assigned a repeat counter which causes the trace to look for this Trigger 3 a number of times
before a trigger is recognized. The value for this repeat counter is configured in the Last Trig
Repeat Count field, and can be assigned any value between 1 and 65536.

After a trigger is recognized by the trace in both normal filter and window filter mode, you can
configure the trace to continue to record any number of additional frames between 0 and
2,097,151 (1FFFFFH). This number is configured in the Post Trigger Count field.

Filtering

Filtering selects the type of information in an address range, and the type of data that is re-
corded in the trace memory. This function is achieved by configuring the filter under the Filter
tab in the Trace Configuration window. When you select Filter (under the Trace Setup tab in
the Trace Configuration window), filtering is enabled according to the programmed ranges in
the Filter tab. When this check box is cleared, all the enabled filter cycles under Includes for
Triggers and Filter (regardless of what the address is and what the data is), are recorded in
the trace.

Setting Triggers and Filter Ranges

Setting triggers and filter ranges is done in the Trigger 1, Trigger 2, Trigger 3 and Filter tabs
in the Trace Configuration window.

The cycles that can be used for the triggers are determined under the Includes for Triggers
and Filter field, by the Trigger check boxes. (For more details about these selections, see the
“Types of Cycles for Triggering” section.)

The cycles that can be used for the filter are determined under the Includes for Triggers and
Filter field, by the Filter check boxes. (For more details about these selections, see the “Global
Filtering” section.)

The triggers and filter are configured as address ranges and data ranges, which when identi-
fied, cause a trigger or a filter to be recognized. In opcode trigger mode the ranges can also be
associated with either:

A. Instruction opcode execution and fetch

B. Data reads and writes

C. Both A and B



©   ICE Technology                    68HC12 Trace Information 12

In data trigger mode the ranges can be associated with either:

A. Data reads

B. Data writes

C. Both A and B

For more details about how the different cycles are classified into these categories, refer to the
“Trigger Mode” section.

The address ranges programmed can be in the range of 00000H - FFFFFH (1-MB space),
which properly covers programs of size up to 1 MB. For applications where only 64K of HC12
memory space is used, simply specify a 16-bit address range.

The data ranges can be in the range of 0000H to FFFFH, which covers the 16-bit data bus used
by the HC12. For 8-bit data accesses, set the data mask to 00FF. For 16-bit data accesses, set
the data mask to FFFF.

The three triggers and the filter have enable check boxes, which are displayed both in the
Trace Setup tab under Active Triggers and in the Trigger 1, Trigger 2, Trigger 3 and Filter
tabs respectively. These check boxes control the same functionality in both places, and so
they are tied together. For example, selecting Trigger 1 in the Trace Setup tab automatically
selects Enabled under the Trigger 1 tab, and vice-versa.

Trigger Input and Trigger Output

The trigger input and trigger output are input and output signals to and from the trace, and can
be used to connect the trace to other devices (such as logic analyzers and scopes) for triggering
purposes. These two signals are available both on coax connectors and on test points on the
trace board.

Trigger Output

The trigger output signal is an active low output from the trace, which can be used to trigger an
external device such as a logic-analyzer or a scope when the trace trigger occurs. This
signal is available both on the TRIG-OUT coax connector, and on TP3.

Trigger Input

The trigger input signal is an active-low input to the trace, and can be used to carry an external
trigger generated by an external device such as the target, a logic analyzer or a scope, in order
to cause the trace to trigger. The trigger input signal has a 10K pull-up resistor to +5 V, which
defaults this input to be inactive when nothing is driven on it.

This input can function in one of two modes: trigger and inhibit. You can select these modes in
the Trace Setup tab in the Trace Configuration window using the Trigger Input option but-
tons.



©   ICE Technology                      68HC12 Trace Information 13

When configured as trigger, this input, when becomes low, causes the trace to trigger, continue
to collect number of frames as specified by the post trigger count field in the Trace Setup tab
in the Trace Configuration window, then stops recording and displays the recorded frames.
This can also lead to emulation break, in case emulation break on trigger or on trace stop is en-
abled by selecting Yes, on Trigger or Yes, on Trace Stop in the Trace Setup tab in the Trace
Configuration window.

When configured as inhibit, this input, when becomes low, inhibits the trace trigger logic from
advancing to look for the next trigger or from counting an occurrence of a trigger as specified
by the repeat count field in the Trace Setup tab in the Trace Configuration window. This
means, for example, if a trigger is set on address X, and address X is met, the trace triggers
only if the trigger input is high. If the trigger input is low, no trigger occurs.

Extend Recording

The extend recording function allows extending trace recording a number of additional in-
structions each time the filtering system is recording a frame to the trace memory. The extend
recording function is enabled by selecting Extend Recording? under the Trace Setup tab in
the Trace Configuration window. When extend recording is enabled, you can specify how
many additional instructions will be recorded (0 to 255). This is specified in the Extended
Count field under the Trace Setup tab in the Trace Configuration window. For example, the
value 0, will record all the remaining frames in the current instruction, and when the next in-
struction begins, will stop recording until the next filtered frame. The value 2, for example,
will record all the remaining frames in the current instruction, plus all the frames which result
from the next two instructions executed, and then stop recording until the next filtered frame.

Stopping the Trace

Stopping the trace can be done in three ways:

• When emulation is stopped, the trace stops automatically

• After a trace trigger or an external trigger occurs, and all the specified post-trigger samples
are collected

• When the entire trace memory fills up with frames and Trace Stop on buffer full is
selected in the Trace Setup tab under the Trace Configuration window

Breaking Emulation from the Trace

Emulation break by the trace is configured by selecting one or more of the check boxes under
the Break Emulation? field in the Trace Setup tab in the Trace Configuration window. All
emulation break options by the trace skid. This means that due to pipelining of the trace logic,
it takes the trace a few cycles to identify the cause to the required emulation break, and there-
for the emulator executes a couple of extra instructions before it finally breaks emulation. The
exact number of additional instructions that are executed in these cases, varies from instruction



©   ICE Technology                   68HC12 Trace Information 14

to instruction and depends on the CPU clock. You can configure the trace to break emulation
(stop the user code from running), on one of the following two events.

Break Emulation on Trace Trigger

This option causes user code to stop execution as soon as a trigger is recognized by the trace
(after the sequence of Trigger 1, then Trigger 2 then, Trigger 3, and so on, as configured by the
user, or after trigger input becomes active).

Break Emulation on Trace Stop

This option causes user code to stop execution whenever the trace stopped for some reason.
This can happen, for example, after a trigger is recognized by the trace, and all the additional
frames are recorded as specified by the Post Trigger Count field, or if the trace becomes full
and stops because of the Trace Stop on buffer full in the Trace Configuration window.

Examples

This example shows how to set up the HC12 trace for various scenarios, and how to utilize its
full power for your debug requirements.

All the following examples use the Nohau hc12time example that is available with the Seehau
software in directory examples. To load this example:

1. Click on the File menu.

2. Choose Load Code.

3. Select hc12time.695.

This example uses the memory range between 0800h - 0BFFh for both instructions and data.
This program generates a running clock that can be viewed during run-time. To view this
clock:

1. Open a Data window.

2. Using the right mouse button, right-click in the data window and choose Address Space
Shadow.

3. Right-click again and choose Display As, and Type ASCII.

4. Switch the address of the window to 0B80 by typing at the bottom of the data window
0B80, in order to view the clock.

5. Click on the GO icon on the control bar. You should now see the clock updating at address
0B80h.



©   ICE Technology                     68HC12 Trace Information 15

Example A

This example shows how to record information in the trace and display it.

After installing Seehau and running Seehau Config, the Seehau software should be automati-
cally configured to record executed instructions and CPU reads and writes in the trace. To
record in the trace:

1. Start Seehau.

2. Load the hc12time example.

3. Open a Trace window by clicking on the TR icon in the control bar.

4. Click on the Source Step Into icon in the control bar. The program executed a source step
to the first source line after the initialization code, and the initialization code which was
executed should be displayed in the Trace window.

Note: The information is displayed in the order it is executed. Every instruction is followed
immediately by the data reads and writes which resulted by its execution. Also, all the
displayed instructions were actually executed. Unexecuted fetches are not displayed in
the Trace window.

If you don't see anything displayed in the Trace window, make sure you executed all the steps
specified here correctly. If you still don't see anything displayed in the Trace window, contact
Nohau Technical Support, or your local Nohau representative.

Example B

This example shows how to record and display all the raw bus cycles in the trace display.

1. Bring up the Trace Configuration window by clicking on the Config menu and choosing
Trace.

2. Under the Includes for Triggers and Filter field, scroll down. Clear the Instruction
Execution (Filter) check box.

3. Select the next seven check boxes: CPU Write (Filter), CPU External Read (Filter), CPU
Internal Read (Filter), BDM Reads and Writes (Filter), Interrupt Vectors (Filter), Fetch
Cycles (Filter) and Free Cycles (Filter). This enables recording all of these raw bus cycles
in the trace.

4. Click OK.

5. Run the emulator by clicking on the GO icon

6. Stop the trace by clicking on the Trace icon. The recorded raw bus cycles will display in
the trace window. Among the raw bus cycles you will find fetch cycles, free cycles, and
data read and write cycles.



©   ICE Technology                     68HC12 Trace Information 16

7. Enable the timestamp field. Right-click in the Trace window and choose Show Time-
stamp.

8. Configure to show the timestamp as relative time. Right-click in the Trace window and
select Relative Timestamp and Convert Cycles to Time.

In the trace display, every raw bus cycle is between 120 nanoseconds and 160 nanoseconds
after the previous bus cycle, which reflects the ECLK rate of 8 MHz (ECLK period is 125
nanoseconds).

Note that the operation of the trace was stopped, and recorded data was read from it and dis-
played without any interruption to the program, which is still running at full speed. Also, the
trace can be reconfigured with new configuration, started and stopped, as many times as re-
quired without any interruption to the program which is running at full speed by the emulator
during this time.

Example C

This example shows how to trigger and stop the trace on instruction execution.

This example sets a trace trigger on the execution of the instruction at address 082F (LDY
2,SP). To set up this example:

1. Bring up the Trace Configuration window by clicking on the Config menu and choosing
Trace.

2. Under the Includes for Triggers and Filter, select these three check boxes: Instruction
Execution (Trigger), Instruction Execution (Filter), and Fetch Cycles (Filter). Make
sure that all the other check boxes on this list are cleared. This allows triggering on in-
struction execution, and to record instruction execution and opcode fetches only.

3. Set the Post Trigger Count field to 10 to enable recording 10 extra frames after the
trigger is recognized.

4. Click on the Switch to the Trigger 1 tab.

5. Right-click on the upper white field in this tab. Remove all the existing records in this
field (if there are any), and then select Add. A new Edit Trigger Qualifier dialog box
opens.

6. Click Opcode Fetch. This selects to trigger on instruction execution.

7. Click in the Begin box and type 82f.

8. Click End, and 82f automatically displays.

9. Click OK.



©   ICE Technology                     68HC12 Trace Information 17

The new opcode fetch range 82f-82f is displayed in the upper white field. The Enabled check
box at the bottom of the Trigger 1 tab is automatically selected to enable Trigger 1. This
check box also appears in the Trace Setup tab under the Active Triggers field. This check
box can always be cleared to disable Trigger 1. Leave this check box selected for this example,
and click on OK. If the emulator is not already running, run it right now by clicking on the
GO icon.

The trace stops recording after a second or two, and displays the recorded information, that in-
cludes, in this example, execution and opcode fetches as configured, and on the left side of the
Trace Display window are, frame numbers. Frame 0 is always the frame during which the trig-
ger occurred (or the next recorded frame after the trigger occurred in case the trigger frame is
not recorded). In this example, the LDY 2,SP instruction at address 82f which trigger 1 was set
on. To insure that the trace did not trigger when this instruction was fetched but not executed,
scroll backward in the trace window. Note that the previous instruction before the LDY 2,SP,
the BNE $081C, which is a conditional branch, was executed many times before the trace trig-
gered. All of these times the conditional-branch was taken, and therefore the LDY 2,SP in-
struction at address 82f was not executed. If you look carefully, you will also see that during
all of these sequences the opcodes at addresses 82E and 830 were fetched many times, but the
trace did not trigger on them since they were not executed.

Example D

This example shows how to record only an address range of executed instructions.

To record an address range of executed instructions, the filtering mechanism needs to be used.
To set up this example:

1. Bring up the Trace Configuration window by clicking on the Config menu and choosing
Trace.

2. Under the Active Trigger field, clear any activated triggers (if there are any) by clearing
the Trigger 1, Trigger 2 and Trigger 3 check boxes.

3. Under Includes for Triggers and Filter, select: Instruction Execution (Filter), and CPU
Write (Filter). Clear the remaining filtering check boxes to enable recording only instruc-
tion execution and CPU writes in the trace.

4. Next, set up the trace to record only the three instructions at address range 82F-836. Select
the Filter tab. Remove any existing qualifiers that exist in this tab by selecting them, and
then right-clicking and choosing Remove.

5. Right-click in the upper white field, and choose Add. A new dialog box opens.

6. Click Opcode Fetch to select to filter instruction execution information.

7. Click on the Begin field and type 82F.

8. Click on the End field and change it to 836.



©   ICE Technology                     68HC12 Trace Information 18

9. Click OK.

The new instruction execution address range shows in the upper white field. The Enabled
check box at the bottom of the Filter tab is automatically selected to enable the filter. This
check box also appears in the Trace Setup tab under the Active Triggers field. This check
box can always be cleared to disable the filter. Leave this check box selected this example, and
click OK. Run the emulator by clicking on the GO icon and then stop the trace by clicking on
the Trace icon.

The trace displays the recorded frames that include only the three instructions at addresses
82F-836. If the timestamp is not displayed in the trace window already, display it now by
right-clicking in the Trace window and choosing Show Timestamp. Also change the time-
stamp to be displayed in relative time units by again right-clicking in the Trace window and
choosing Relative Timestamp and Convert Cycles to Time to select these two options. It is
evident that between every execution of the MOVB D,X,D,Y instruction and the LDX 2,SP
instruction a long time period has passed indicating that some unrecorded instructions were
executed between these two instructions.

Example E

This example shows how to add to the filtered instructions in Example D, and add a filter of
data write (or read) to a certain address space.

To set this example, first set the trace as explained in Example D. Note that in Example D
under the Includes for Triggers and Filter field, CPU write cycles are enabled, which allow
recording of these cycles in the trace.

1. Bring up the Trace Configuration window, and click on the Filter tab.

2. In the Filter tab, right-click on the upper white field and choose Add. A dialog box opens.

3. Click Data R/W. This selects an address range of data read and write cycles. In this exam-
ple, the Includes for Triggers and Filter list (in the Trace Setup tab), the CPU external
reads and CPU internal reads are not enabled. Only data writes cycles are recorded by
this filter.

4. Click in the Begin field and type B80.

5. Click in the End field and change to B8F.

6. Click OK.

The new Data R/W range is displayed in the upper white field (in addition to the Opcode-
Fetch range, which was already present from Example D). Click OK. Run the emulator by
clicking on the GO icon, (or start the trace by clicking on the Trace icon, if the emulator is
already running), and then stop the trace by clicking on the Trace icon.

In the Trace window, both data write cycles from addresses B80-B8F and instruction execu-
tion from addresses 82F-836 are displayed, as programmed by the filter.



©   ICE Technology                    68HC12 Trace Information 19

Example F

This example shows how to filter to record a specific instruction and the data cycles which are
caused by it, without knowing what addresses these data cycles access.

This example sets a filter that records the MOVB D,X,D,Y instruction at address 820, and all
the data cycles that result from its execution. To set up this example:

1. Bring up the Trace Configuration window and clear all the programmed qualifiers for
the filter.

2. Click on the Trace Setup tab.

3. Select the Instruction Execution (Filter), CPU Write (Filter), CPU External Read
(Filter), and CPU Internal Read (Filter) check boxes listed under Includes for Triggers
and Filter to enable recording instruction execution and data read and write cycles. Clear
the remaining filtering check boxes.

4. Select the Filter tab, and clear all the existing qualifiers (if any).

5. Right-click on the upper white field in the Filter tab and select Add. A new dialog
box opens.

6. Click Opcode Fetch to select to filter instruction execution information.

7. Click on the Begin field and type 820, and then click on the End field and change it to
823. This records the required MOVB D,X,D,Y instruction that occupies addresses
820-823.

8. Click OK.

The new instruction execution address range shows in the upper white field. The Enabled
check box at the bottom of the Filter tab is automatically selected to enable the filter. This
check box also appears in the Trace Setup tab under the Active Triggers field. This check
box can always be cleared to disable the filter. Leave this check box selected for this example.

To record the data cycles which are cause by the MOVB D,X,D,Y instruction, use the Extend-
Recording function. Select the Trace Setup tab, select Extend Recording?, and type 0 to the
Extended Count field. This configures the trace every time when a filtered frame is recorded,
to extend the recording for the duration of the current instruction, and stop extending the re-
cording when the beginning of the next instruction execution is detected. In the duration of
the extend recording, all the cycle types which are enabled by the filter check boxes under the
Includes for Triggers and Filter list, are recorded. In this example, this enables recording
instruction execution and data read and write cycles.

Click OK. Run the emulator by clicking on the GO icon (or start the trace if the emulator is
already running), and then stop the trace by clicking on the Trace icon.



©   ICE Technology                    68HC12 Trace Information 20

In the Trace window, the MOVB D,X,D,Y instructions from address 820 are displayed when
each instruction is followed by a CPU byte read and a CPU byte write cycles, which result
from the MOVB instruction.

Example G

This example shows how to filter data write (or read) cycles at specific addresses, and record
information to allow figuring which instruction and function caused each of the filtered data
write cycles.

This example sets a filter that records the data write cycles to address B80, and the next two
instructions which are followed immediately after each of the these data write cycles of
address B80.

To set up this example

1. Bring up the Trace Configuration window, clear all the programmed qualifiers for the
filter, and disable all the triggers.

2. Select the Trace Setup tab and enable recording instruction execution and data write
cycles by selecting under the Includes for Triggers and Filter field the Instruction
Execution (Filter) and CPU Write (Filter) check boxes. Clear the remaining filtering check
boxes.

3. Select the Filter tab.

4. Right-click on the upper white field in the Filter tab and select Add. A new dialog
box opens.

5. Click Data R/W to select to filter data read and write cycles. In this specific case, this will
filter only data write cycles, since the CPU External Read (Filter) and CPU Internal Read
(Filter) check boxes under the Includes for Triggers and Filter list are disabled.

6. Click on the Begin field and type B80, and then click on the End field. B80 automatically
appears. This will select to record the required data write cycles to address B80.

7. Click OK.

The new Data R/W address range shows in the upper white field. The Enabled check box at
the bottom of the Filter tab is automatically selected to enable the filter. This check box also
appears in the Trace Setup tab under the Active Triggers field. This check box can always be
cleared to disable the filter. Leave this check box selected for this example.

To record the next two instructions that follow each occurrence of Data Write to address B80,
use the Extend-Recording function. Select the Trace Setup tab, select Extend Recording?
and type 2 in the Extended Count field. This configures the trace every time when a filtered
frame is recorded, to extend the recording for the duration of the current instruction and the
next two instructions, and stop extending the recording when the beginning of the third in-
struction execution is detected. In the duration of the extend recording, all the cycle types



©   ICE Technology                     68HC12 Trace Information 21

which are enabled by the filter check boxes under the Includes for Triggers and Filter list,
are recorded. In this example, this enables the recording of instruction execution and data write
cycles.

Click OK. Run the emulator by clicking on the GO icon (or start the trace if the emulator is
already running), and then stop the trace by clicking on the Trace icon.

The recorded information is displayed in the trace window. Analyzing it shows that address
B80 is roughly being written to every 50uSEC by looking at the timestamp information (en-
abled by right-clicking in the Trace window and selecting Show Timestamp), and is followed
by two instructions at addresses 877 and 879. Break emulation, click on the Assembly tab in
the Source window, and scroll to address 877 (or press CTRL+A and then type 877). By
looking at this window you see that the data writes to address B80 are being caused by the
STAB 1,Y+ instruction in function mysprintf.

Example H

This example shows how to set a filter to record only data cycles which are caused by a spe-
cific instruction, or a specific range of instructions, without knowing what addresses these data
cycles are accessing and without recording the instructions themselves (see “Example F”).

This example sets a filter to record all the data cycles that are caused by the MOVB D,X,D,Y
instruction at address 820, without recording the instruction itself. The window filter mode is
used for this purpose.

To set up this example:

1. Bring up the Trace Configuration window and clear all the programmed qualifiers for the
triggers and the filter. Disable all the triggers and filter.

2. Click on the Trace Setup tab and enable recording data read and write cycles by selecting,
under the Includes for Triggers and Filter field, the CPU Write (Filter), CPU External
Read (Filter) and CPU Internal Read (Filter) check boxes.

3. Clear the remaining filtering check boxes. To enable start and stop recording on instruc-
tion execution by Trigger 1 and Trigger 2, select the Instruction Execution (Trigger)
check box, and clear the remaining triggering check boxes.

4. Under the Filter Mode field, click Window to select to operate the trace in the window
filter mode. This enables recording whenever the MOVB D,X,D,Y instruction at address
820 is executed, and stops recording whenever the instruction at address 824 (which is the
next instruction after the MOVB D,X,D,Y instruction) is executed.



©   ICE Technology                  68HC12 Trace Information 22

To set up the enable recording condition, Trigger 1 will be used.

1. Select the Trigger 1 tab, and clear all the existing qualifiers (if any). Right-click on the
upper white field in the Trigger 1 tab and select Add. A new dialog box opens.

2. Click Opcode Fetch to enable recording on instruction execution.

3. Click on the Begin field and type 820.

4. Click on the End field and 820 automatically shows. This enables recording each time the
MOVB D,X,D,Y instruction at address 820 is executed.

5. Click OK.

The new instruction execution address range shows in the upper white field. The Enabled
check box at the bottom of the Trigger 1 tab is automatically selected to enable Trigger1.
This check box also appears in the Trace Setup tab under the Active Triggers field. This
check box can always be cleared to disable Trigger 1. Leave this check box selected for
this example.

To set up the Stop recording condition, Trigger 2 will be used.

1. Select the Trigger 2 tab, and clear all the existing qualifiers (if any).

2. Right-click on the upper white field in the Trigger 2 tab and select Add. A new dialog
box opens.

3. Click Opcode Fetch to select to stop recording on instruction execution.

4. Click on the Begin field and type 824, then click on the End field and 824 automatically
shows. This will select to stop recording each time the ADDD #$0001 instruction at
address 824 is executed (this instruction comes immediately after the MOVB D,X,D,Y
instruction at address 820).

5. Click OK.

The new instruction execution address range shows in the upper white field. The Enabled
check box at the bottom of the Trigger 2 tab is automatically selected to enable Trigger2.
This check box also appears in the Trace Setup tab under the Active Triggers field. This
check box can always be cleared to disable Trigger 2. Leave this check box selected for
this example.

Now, each time the MOVB D,X,D,Y instruction at address 820 executes, recording is enabled
by Trigger 1. Then, when the following instruction at address 824 executes, recording is
stopped by Trigger 2. The recording enable and stop will then take place many times, when-
ever these two instructions are executed. Since only data read and write are enabled to be re-
corded (under the Includes for Triggers and Filter check-boxes list) then only the data cycles
which occur between the record enable and record stop, will be recorded in the trace.



©   ICE Technology                      68HC12 Trace Information 23

Click OK. Run the emulator by clicking on the GO icon (or start the trace if the emulator is
already running), and then stop the trace by clicking on the Trace icon.

In the Trace window, a list of CPU read and CPU write cycles will display. Each set of a
CPU read and a COU write, result from one execution of the MOVB D,X,D,Y instructions
at address 820.

Example I

This example shows how to set a complex trigger that includes detection of two trigger events
sequentially, repeats the detection of the last trigger event, then records an extra number of
frames, and finally breaks emulation.

This example sets a trigger that waits for byte B87 to be written with the data 39 (which is the
ASCII code of 9, and will be satisfied when the clock seconds become equal to X9). Then, the
execution of the BNE $081C instruction at address 82D occurs three times, causing the trace
to trigger. After this trace trigger, the trace continues to record an extra 1000 frames, then
stops the trace, and breaks HC12 emulation (stops HC12 from running code).

To set up this example:

1. Bring up the Trace Configuration window and clear all the programmed qualifiers for the
filter and triggers, and disable all the triggers.

2. Select the Trace Setup tab. Enable triggering on instruction execution and data write by
selecting the Instruction Execution (Trigger) and CPU Write (Trigger) check box under
the Includes for Triggers and Filter field. Clear all of the other trigger check boxes in this
list. Also in this list, enable recording instruction execution and data read and write cycles
by selecting the Instruction Execution (Filter), CPU Write (Filter), CPU External Read
(Filter) and CPU Internal Read (Filter) check boxes. Clear the remaining filtering check
boxes.

3. Select the Trigger 1 tab.

4. Right-click on the upper white field and select Add. A new dialog box opens.

5. Click Data R/W to trigger on data read and write cycles. In this example, this triggers only
on data write cycles, since the CPU External Read (Trigger) and CPU Internal Read
(Trigger) check box under the Includes for Triggers and Filter list are disabled.

6. Click on the Begin field and type B87, then click on the End field. B87 automatically
appears. This will select to first look for the required data write cycles to address B87.

7. Click OK. The new Data R/W address range shows in the upper white field.

8. Right-click on the lower white field and select Add. A new dialog box opens.

9. Click on the Begin field and type 39, and then click on the End field. 39 automatically
appears. This will select to trigger on data 39 at address B87.



©   ICE Technology                  68HC12 Trace Information 24

10. Click OK. The new data range of 39-39 shows in the lower white field.

11. Click Data Mask at the bottom of the Trigger 1 tab, and type 00FF. This specifies that the
data being looked for is 8 bits wide and not 16 bits wide. Note that the Enabled check box
at the bottom of the Trigger 1 tab is automatically selected to enable Trigger 1.

12. Click on the Trigger 2 tab.

13. Right-click on the upper white field, and then select Add. A new dialog box opens.

14. Select the Opcode Fetch option to trigger on instruction execution in this trigger.

15. Click on the Begin field and type 82D, and then click on the End field. 82D automatically
appears. This identifies the BNE $081C instruction at address 82D.

16. Click OK. The new instruction execution address range shows in the upper white field.
Note that the Enabled check box at the bottom of the Trigger 2 tab is automatically
selected to enable Trigger 2.

17. Click on the Trace Setup tab. Select the Trigger 1 and Trigger 2 check boxes. Clear the
Trigger 3, the Filter, and the Extend Recording check boxes.

18. Type 3 in the Last Trig Repeat Count field to enable the trace to look for trigger 2 (which
is the last programmed trigger in this example) for three times before the trace triggers.

19. Type 1000 in the Post Trigger Count field to enable the trace to record an extra 1000
frames after it triggers and before it stops recording.

20. Under the Break Emulation? field, select the Yes, on Trace Stop check box to instruct
the trace to break emulation (stop the program from running), after Trigger 1 was met,
then Trigger 2 was met three times, 1000 extra frames were recorded, and the trace
stopped recording.

21. Click OK to close the Trace Configuration window. Click on the Reset icon, and then click
on the GO icon to run the program.

If a Shadow Data window is open and displays address B87, you can see that a short while af-
ter this address displays the ASCII character 9 (becomes equal to 39) the trace will stop, and
so will the program. This whole process takes 10 seconds from the time you run the emulator,
until the trace recognize the triggers and break emulation.

Looking at the bottom of the Trace window, you can see that 131072 frames were recorded,
and four triggers occurred (Trigger 1 once, and Trigger 2 three times). Scroll to frame 0. You
see that this frame recorded the last occurrence of the BNE $081C instruction at address 82D,
which caused the last recognition of Trigger 2, and caused the trace to trigger. If you scroll



©   ICE Technology                    68HC12 Trace Information 25

back in the Trace window, you can see the two previous occurrences of the BNE $081C in-
struction at address 82D, which caused the first two Trigger 2 occurrences (at frames –21
and -42). Also ,the data write of 39 to address B87, which caused the occurrence of Trigger 1
at frame -79.

If you scroll forward in the Trace window to the end of the window, you see that an extra 1000
frames were recorded after the trace triggered, as configured. If you check in the Assembly
tab in the Source window, you will also see that the emulator emulation stopped a few instruc-
tions after the last recorded instruction in the trace. The reason it took the trace a few instruc-
tions to break emulation, is because of its internal pipeline structure, which causes it to detect
events only a few cycles after they actually happen, and then a delay of a few more cycles
takes place until the emulator breaks emulation. This is normal when breaking emulation from
the trace, and will always take place when the trace is configured to break emulation. (This
obviously does not happen when regular software on hardware breakpoints are used. These
breakpoints never execute the instruction they are set on.)


