E

NOHAU.

EMUL166-PC
Getting Started Manual

Version 2.5

© ICE Technology All rights reserved worldwide.

Administrator
icelogo

Contents

Chapter 1 The Nohau EMUL166: The Hardware Partsccccccceeeeiiiiininnnnnnnnenenne. 4
Some Background: the Nohau EMUL166-PC EMUIAtOXucievveieiveinireresserossansessansssesssssssones 4
The History of the EMULL66 EMUIALOT:c.ooiiiiiiiiiiiiiicie e 4
The Two-board EMUL166 Emulator DeSIZN:coooiiiiiiiiiiiiiiiie e 5
Emulator Pod Jumpers, LEDS, and Test POINES:cccccceevrenrrercnseicssnesssenessesssssssssssssssssssssssssssssses 8
Emulator LED S: ..ot 8
Emulator Pin-outs (in numerical Order) ...t 9
Edge Jumpers (in phySical OTAET)cc.ooiiiiiiiiiciiii et 10
Default Jumper Settings of Emulator POD -167TN Rev C...........ooooiiiiiiiii e 12
Trace Board Jumpers and PIUGSueiiiiveiiiiiiuiiiniinniicnisnnicssisnnicsssssrncsssssssssssssssssssssssssssssssssssens 12
Trace User Input Connector: (J3)oooiiiiiiii oot 12
Chapter 2 The Nohau EMUL166: The Software Parts........ccccceeeeeeiiieeiciceeeeeeenennnns 13
The Nohau Universal User Interface Seehauccouiivvveienieicnseicnsninnsencsseicssnsssssnessssssssasssssanes 13
Configuring the Emulator Software Seehau.ccooiiiiiiiiie e, 13
Important Software and Hardware NOES:coociiiiiiiiii e 15
Starting the Emulator and SeChaulccocoiiiiiiiiii e, 15
PIODICINS 7 ..o 15
Shutting doOWn SEERAU:ciiiiiiii et 16
Seehatu COMMANUScoovieiieinirninnrninnsenenssensssanisssansssssssssssssssssssssssssssssssssssossssssssassssssssssssssssasssssasssss 17
MACTO CONSLIUCTION ...ttt ettt ettt 17
MACTO EXECULION ...ttt ettt ettt ettt 17
Command FOIMA ..ot 18
Command EXAMPIEScocooiiiiiiii oot 18
ComMMANA GTOUPS: ... ettt ettt ettt ettt 19
Quick Saving a Configuration Menu using the Apply BUuttonccooiiiiiiiiiiiiccee, 19
Creating New BULtONScccccevvvuiienieicnsenicssnicsssesssssssessssssssssssssssssssssasssssassssssssssssassssssssosssssssssasssssas 20
Chapter 3 The Nohau EMUL166: Timer.abs Examplecccccvvveeeeeeeiiiicccccccsnnns 21
Running the example program TIMER.ABSiiiniiiiinnniinnniinnniinneicnniississsissssisssssssses 21
Demonstrations of Seehau Featurescioeiiiiiiininiicnniicnsiesnseiesseissssssssssssssssssssssssssasssssassssses 22
Watching Data in Real-time with the Shadow RAMc.oooiiiiiii e, 22
Graphical Display of Data in Real-Time USIng @ Gaugeccooovovviiiiiiiiiiioieiceceee e 23
Graphical Display of Data in Real-Time Using a Graph................cccocooiiiiiiiiiiiiceceeeec e 24
Setting BreakPOIntscc.oiviiiiiiii oo 24
Program Performance Analysis (PPA) ..o 25
Chapter 4 The Nohau EMUL166: Trace and Triggers........cccccceeeeeeeeeeeeeennenneenenenns 27
Trace and TriZZer OQVEIVIEWcccieicveiensseicssrssssanesssesssssssssssssssssssssssssssasssssassssssssssssssssasssssssssssssss 27
Trace WINAOW DISPIAYo.ooviiiiiiii et 27
Trigger Example on an Address and Data Qualifier. ... 28

o}

Trace Filter EXAMPIEccoooiiiiiiiiiii et 30

Chapter S The Nohau EMUL166: Connecting to your Targetcccceevueeeeeeene. 31

Clocks, Oscillators and Crystalscoeieieeienniicnseninsseiosssissssssssssssssssssssssssssssssssassssssssssssssssasssssases 31
CryStal CAPACIEOTSviviiiiicei ettt ettt ettt 31
EMULTO6 OSCHIALOTS ... e e, 31

Connecting to Your Target HArAWATecoceievviinisiensseicnsnicssensssssssssssssssssssssassssssssssssssssasssssases 32

COMNCIUSIONS cauueeeereeeeeeeeeeeneeeseseeeseessne 32

Chapter 6 Debugging with the Siemens C167 E2 Bondout Microcontroller 33

INEFOAUCTIONoueeeeeeeenneneneieeeeeeeeseesessessesseesssassssssssssssssee 33

INtErNAl OF EXCEITIAL IMOAE . uuueeeereeeeniereeneceereeneeerreseesessessescesessessesssssssosssssssssssssssssssssessssassesssssassssosaas 33

What the E2 BONAOUL OfTErSccvveeuuenniieeereeneereeeererseesssessesssssssssesessses 33

Note: Nohau will be making some enhancements to the trace capture and dis-
play. When this is completed, the screen shots described here will no longer
match. This chapter will be rewritten at that time to incorporate the latest
chnges and will be posted on the web. The software updates will also be avail-

able free of charge on the Nohau website.eeeeeeiiiieiiiiiinirrcnnnneeeeeeeeececceennn 33
Special Bondout BUSEScccoveieiiverinnseiesssniesssanisssnscssssssssssssssssssssssssssssasssssassssssssssssssssssasssssasssssasss 34
TA Bus: INStruction AdAIESSc.oiiiiiiiiiiii e 34
ID Bus: Instruction Dataccooiiiiiiii e 34
OA: OPErand AdAIESSoviiioiiiiiie ettt 34
OD BUs: Opeode Datal.........c.ocvoiiiiiiiiiieeee et 34
X B S ettt 35
VLIS, ettt ket et h ettt st n et a e 35
INStruction PIPEliNeccceievveienieienseninnsenisssenessseisssnnssssnsssssssssssssssssssssssssssasssssassssssssssasssssasssssasssssas 36
Pipeline Prefetch & FIUSREScoooiiiiii e 36
JUMP CACRE c.cuueneriiiriiiiiinnnienneiensnticnetessssisssssisssasssssassssssssssssssssasssssassssssssssasssssasssssassssssssssssnsssssas 36
JUMP CACKE HIt ... 36
TWO fOr the Price Of ONe:ccoiiiiiiiii e 37
Triggering on Internal DAatacoeievveiinieinnieinnseninsseninsseissssissssnsssssssssssssssssssssassssssssssssssssasssssases 37
TWO Chip EMUIALION ..ccuviivnnviiiniiiinieiinisniciseiesssanisssseiossssssssssssssssssssssssssssasssssassssssssssssssssssasssssasssssas 37
SiNGle Chip MOAEccoovvueiiiieiiniruninisaninisnisssenossssnosssssssssssssssssssssasssssasssssasssssassssssssesssssssssssssssasssssases 37
EMUIAtiON ACCUTACY ceuvierereressseresserossanssssanssasssssassssssssssasssssasssssasssssas 38

COMNCIUSION aeaaeeeeeeeeeeeeeeeneeeseceeseeessse 38

Chapter 1: Nohau EMUL166: The Hardware Parts

Chapter 1 The Nohau EMUL166: The Hardware Parts
Some Background: the Nohau EMUL166-PC Emulator

The History of the EMUL166 Emulator:

The EMUL166-PC emulator is the second generation Nohau emulator for the Siemens C166 family of micro-
controllers. The first model consisted of a two board design for the emulator and two trace boards in a
sandwich design. One trace board was for internal memory and the other external memory. The bottom
emulator board contained the Siemens E (E1) bondout controller and C167CR and C163 controllers that were
used to provide the CAN and SSP X-peripherals. This emulator operated at a maximum speed of 25 MHz.

A later version contained the Siemens E2 bondout and since this controller contains a CAN controller, the
C167CR was not needed. The C163 remained to provide the SSP serial port. The speed was increased to 33
MHz. The upper emulator board contained the emulator logic including two FPGAs that provided great
flexibility in updating the firmware. These two emulator boards have been redesigned into a single board and it
uses the E2 bondout. The C163 has been removed in favour of a daughterboard arrangement to accommo-
date X peripherals not found on the Siemens bondout controller.

The two trace boards allowed tracing on both internal and external memory areas and were optional. The
external trace contained a trigger in and trigger out connectors plus 8 bit data inputs that were recorded in the
trace memory. These boards have been redesigned into the single board emulator available today.

The older Nohau emulators are similar in functionality to the newer two board solution. Some features have
been added and the weight reduced. The older emulators will operate with the new Sechau user interface as
well as the older Windows software, but the two board model works only with Sechau. Both emulators
operate with the pls fast-view66 debugger which provides additional features. This manual will work with any
EMUL166 emulator although some jumper settings may be different. The differences between the various
models occur with the clock prescaler jumpers and the PC/AUX jumper. These jumpers are not on all models.
Figure 1 shows the four board emulator connected to the Keil C167CR evaluation board. The EPC cable is
also shown. The Emulator Parallel Cable (EPC) connects to the LPTx port of the host PC. An ISA card and
cable is also available (LC-ISA). Various adapters are available to connect to virtually any target system.

The EMULST10 emulator also supports the C166 and ST10 families up to 50 MHz. This emulator has
advanced trace and trigger facilities for power users. This manual mentions the C166 family: the
SAB-80C166 part itself is not supported by Nohau emulators. All other derivatives are fully supported.

Figure 1

Chapter 1: Nohau EMUL166: The Hardware Parts

The Two-board EMUL166 Emulator Design:

The current EMUL 166 emulator consists of an emulator pod board with an optional trace board. The emula-
tor board contains the Siemens E2 bondout controller and various logic in the form of advanced CPLDs. This
board will operate as an emulator but without the trace, trigger or shadow RAM features. An optional second
board, the trace memory, plugs on top of the emulator pod board and provides these features. The current
maximum speed of both boards is 33 MHz. The photo on the front cover of this document shows the com-
plete emulator in its case. The emulator is configured and operated by the Nohau user interface, Sechau.
Sechau also contains the firmware for the CPLDs of the emulator. Firmware updates are easy and complete
with each new release of Sechau. There are no separate firmware loaders necessary for Nohau products.

The emulator board has various jumpers, LEDs and test points to configure the emulator hardware to your
specifications. Figure 2 is a photo of the top of the emulator board and shows some of the user jumpers,
connectors, other features and the E2 bondout controller. Figure 3 shows the features in a line drawing,.

Figures 4 and 5 show the trace board. The trace board does not have any user facilities available as they are
all reflected on the emulator board or are software configured by Seehau. Do not change any jumpers on the
trace board. The four jumpers that exist are used to configure various trace and trigger memory sizes. Since
the memory chips are soldered in place, there is no need to change these jumpers which may have zero ohm
resistors installed. Trace options are all software configured by the Sechau interface.

Figure 2
Emulator Board

Chapter 1: Nohau EMUL166: The Hardware Parts

Figure 3
Emulator Board

1-6

Chapter 1: Nohau EMUL166: The Hardware Parts

On the bottom of the emulator pod are 5 connectors in an industry standard configuration designed to connect
the bondout emulation controller to the target hardware. This connection can be direct with the appropriate
connectors designed on the target board, or through various adapters available from Nohau. Figure 6 is a
photo of the bottom of the emulation board with the bottom case installed. Note the 4 large connectors (J5 to
J8) and a single small one (JP46). JP46 routes XBUS peripheral signals from future derivatives to be sent to
the target. Maximum system speeds are maintained by not having these signals switched by logic. These
signals will normally be routed physically by the adapter or the target board.

Figure 4
Trace Board

Figure 5
Trace Board

1-7

Chapter 1: Nohau EMUL166: The Hardware Parts

Figure 6
Target Connectors

Emulator Pod Jumpers, LEDs, and Test Points:

This section is based on the POD167 Revision C. This information is clearly marked on the upper side of the
board between the trace board connectors J48 and J46. This is the edge opposite the two clock jumpers. This
is shown just above the serial number location in Figure 3. Figure 2 and 3 show the location of the various
jumpers and test points. Jumper information is also available in the Sechau on-line help. There are no user
jumpers for the trace board.

Emulator LED’s:

Normal operation with emulation stopped has all LEDs L1 to L4 off. With a user program running, L3 (RUN)
will go on. The red RESET LED L2 lights when Sechau is performing a system reset.

L1 USER

This is a yellow LED the user can affect by applying standard TTL levels to TP2. TP2 is active low -
grounding TP2 turns on L1.

L2 RST - RESET

This red LED indicates the application of a reset signal by the Sechau software. The emulator will be in the
reset state when powered with 5 volt supply but without a cable connected to the PC connector J9.

You can reset the emulator by selecting Reset Chip in the Run menu or clicking on the RESET icon on the
toolbar. The commands run reset and run_fullreset will also reset the emulator. These commands can be
entered in the command dialog box or through a Macro.

L3 RUN

This green LED indicates whether the Nohau monitor program or a User program is running. L3 illuminated
means the user program is running.

L4 PWR_ERR - Power Error.

If this LED lights, the correct 5 volts supply is not connected. This can occur if the 5 volt regulated supply is
not connected to J10 and the PC communications connector J9 is connected. L4 is a red LED.

1-8

Chapter 1: Nohau EMUL166: The Hardware Parts

Emulator Pin-outs (in numerical order)

TP1:

Not present.

TP2:

This input activates LED L1 USER. TP2 is active low: this action turns L1 on.
TP3: Break In

This input will cause a break in program execution. TP3 is usually connected to TP4 Break Out from another
EMULI166 emulator. This feature is used to synchronize more than one emulator in a multi-processor system.
Contact Nohau technical support at support@nohau.com for more information.

TP4: Breakout:

This output indicates if the emulator is in monitor mode or is running user code. It is connected to the RUN
LED L3. This output is usually used for customers who have multiple emulators connected to the target
board. It provides a means to synchronize them together. TP4 is high when the Nohau monitor is running,.

TPS: GND

The emulator ground connection and a black ground wire with a clip is soldered to this point. Connect this clip
to a secure ground (or earth) connection on your target hardware. Do this before connecting the emulator
processor pins to the target.

TP6:
This is for Nohau testing. There is no user use for this test point.
JP7 and JP10:

XTAL1 and XTAL2 - These jumpers determine whether the on-board pod clock (U22) or the target clock is
used for emulation. These jumpers must be changed in tandem as a pair. The default is set to POD (the
upper positions) and U22 provides the clock signal to the POD controller. The Pod will supply the clock to the
target if you jumper all three of the pins together. In this case, make sure the target clock is disconnected.

JP51:
Reserved for PLL clock and oscillator board. See chapter 5 for more information.
JPS: T PWR

+5 volts is supplied from the pod power supply through JP5 to the bondout controller. During normal operation
with a target board, 5 volt power for the bondout controller U1 will be supplied by the target and JP5 must be
removed. The pod power supply must still be connected in order to supply power for the rest of the emulator.

JP5 is used for standalone operation i.e. without a target board. JP5 will send power to the target if left
jumpered. If the target has power, this can cause a conflict so JP5 must be removed. If the target has no
internal power supply, the pod is able to supply a small amount, less than 500 ma, to power the target. This
may be useful for very small targets with low current consumption.

Note: When powering up or down the system: the target must never be powered when the pod is not.
Power flowing from the target into the bondout controller can damage it. Always power up the pod first, and
power it down last. Do not leave the Pod powered up without the target power applied for more than 2
minutes. This situation stresses the I/0 circuitry of the bondout chip and will cause permanent damage.

Do not leave the pod powered without the Seehau software running it. The pod will be in an uninitialized state
with unpredictable results. There are no reports of this causing damage.

Power the emulator by switching the AC mains power on after connecting the 5
volt plug to J10. Turn on transients caused by the 5 volt plug bouncing may lock
up the bondout and CPLD chips. It is convenient to switch AC power on and off
using a power bar rather than by inserting the DC plug into J10.

1-9

Chapter 1: Nohau EMUL166: The Hardware Parts

JP26:

This unpopulated connector is used for testing the pod by Nohau. Pin 6 (ECLK) can be used to measure the
CPU clock frequency. The C166 family has a clock prescaler and a PLL on chip providing scaling of oscilla-
tor U22. This pin is the second from the end of the Pod board closest to L1, the USER LED.

Pin 7 (EMUL#) indicates if the Pod is in USER or MONITOR mode. This pin is closest to the edge of the
board. This signal is connected to the RUN LED. The rest of the pins provide no useful information.

JP6:

EPC PWR - JP6 supplies the EPC cable (Emulator Parallel Cable) with 5 volts. If this special cable is not
used, remove JP6. The LC-ISA board does not need power from the pod and JP6 must be removed.

JP13:
This 8 pin connector is used by Nohau to program a serial EEPROM. It has no user use.
J45:

This connector will connect to a small daughterboard to supply XBUS peripherals not supported by the bond-
out controller. This allows the emulation of derivatives not yet introduced and prevents obsolescence of the
emulator. Some of these signals will be sent to the target through JP46 on the underside of the Pod See
Figure 6. JP1 through JP4 control the path of signals from J45 or from the bondout controller Ul.

J46, J47, J48 and J49:
The optional Trace memory board connects to these four connectors.
J5, J6, J7 and J8:

Connects the bondout controller signals to the target. This is an industry standard connector and can be
directly connected to appropriate target boards or through various adapters available from Nohau.

JP46:

This 10 pin connector is used to send XBUS peripheral signals from the optional daughterboard to the target.
This connector and J5 through J8 are shown in Figure 6.

JP40 through JP44: (sec Figure 6)

These five jumpers have zero ohm resistors soldered in them. These jumpers direct logic flow for the five
C166 chip selects. Normally, you do not need to change these jumpers. Contact Technical Support.

Edge Jumpers (in physical order)
JP22: READY:

JP22 connects the READY input signal between the target and the POD controller. The READY signal is
used to terminate a bus cycle and is useful when external devices have a long or indeterminate access times.
READY is activated in certain address ranges as determined by the BUSCON registers.

If the READY signal is not asserted for a bus cycle that it is activated for in BUSCON, the processor will
stop. Only a reset or a watchdog timeout can restore operation at this point (or the assertion of READY).
Since the bondout controller on the pod is used for some housekeeping when emulation is not running, suspend-
ing it can cause Sechau to stop responding. Remove JP2 to prevent this. The default is connected.

JP21: RST#

JP21 connects the Pod and target reset pins together. The RST is the master reset pin. A target peripheral
with the ability to assert this signal may not be desirable. Remove the jumper on JP21 to prevent the Pod
controller from being reset from the target. A reset on the Pod controller will not be passed to the target board
if this jumper is not connected. JP21 is connected in by default.

1-10

Chapter 1: Nohau EMUL166: The Hardware Parts

JP20: AUTOMAP:

Determines whether memory mapping is controlled by software with Seehau or the chip select pins setup
contained in the ADDRSEL1 through ADDRSELA4 registers. The MEM Map Config window shown in
Figure 20 is in the Config menu. AUTOMAP determines whether the numerical addresses specified in the
window or the chip selects selected are passed to the target board. If JP20 is connected, then software
mapping is activated. Since there are no entries in the mapping window, all memory is mapped to the emula-
tor. If JP20 is removed, then mapping is determined by the chip select jumpers and the BUSCON and
ADDRSEL registers. The default is JP20 connected.

JP15 through JP19:

The controller provides 5 programmable chip select pins (CS0-CS4) that are output on parallel port 6 if it is
programmed as an Alternate Function. These are pins P6.0 through P6.4. Recall that if these pins are not
used as chip selects, they can be used as general purpose 1/0 ports.

JP15 through JP19 connect these 5 pins to the target. They create the mapping signals from the chip selects
as in previous Nohau C166 emulators. The default is JP16 through JP19 connected. JP15 not connected.

JP14: P3.12 or BHE:

If you configure P3.12 as an I/O pin, place JP14 on the P3.12 side (upper position). If you configure P3.12 as
either BHE or WRH, place JP14 on the BHE side (lower position). The default is BHE (lower position).

In the process of mapping sections of memory to the target, the RD, WR and BHE signals are not passed to
the target directly. The mapping function of the emulator switches off the pod memories as required. How-
ever, as the signals map memory access to the pod, it gates off the RD, WR and BHE signals from the
bondout controller to the target.

When P3.12 is configured as a standard I/O pin, you would not want it gated off by the pod logic. When the
jumper shunt is in the P3.12 position, it passes directly from the bondout controller to the target. When the
jumper shunt is in the BHE position, P3.12 gates off and pulls high during memory accesses to the pod as
required. The default is BHE connected (or the lower position).

JP1 through JP4:

XP4.4/P4 .4 through XP4.7 through P4.7: These jumpers select whether the upper 4 bits of Port 4 supplied to
the target come from the bondout controller or from a daughterboard connected to J45.

The XBUS is an internal representation of the external bus. This bus is used internally to connect various
peripherals to the CPU. These peripherals look like external devices to the CPU even though they are on-chip
and are accessed as such. Internal peripherals are also on the XBUS.

The bondout controller U1 used for emulation contains most peripherals. If a certain Xbus Peripheral is
available on the bondout chip on the pod, then this peripheral will be used to provide the peripheral to the
target. For those derivatives that use peripherals not on the bondout controller, a daughterboard connected to
J45 will contain a regular series controller that contains this XBUS peripheral. JP1 through JP4 must be set so
these signals are sent from the daughterboard to the target. (XP4.4 through XP4.7 - the upper positions) The
default is all jumpers are set to P4 .x (the lower positions).

1-11

Chapter 1: Nohau EMUL166: The Hardware Parts

Default Jumper Settings of Emulator POD -167N Rev C

This list is for stand alone operation without a target connected. Do not change any trace board jumpers.

POD board
JP7 and JP10 upper position (Pod). This selects the emulator clock and not the target clock.

JP5 on. This is T PWR and supplies 5 volts to the bondout controller.
JP6 off (on if using the EPC cable)

The 13 jumpers on the edge of pod board are all connected except for JP15 (P6.0). If a jumper has 3 pins
(JP16 to JP20), the position is lower or close to the circuit board.

Trace Board Jumpers and Plugs

JP2 thru JPS these jumpers may have zero ohm resistors installed. Please do not change these jumpers.
They configure the trace and trigger memory size and since you cannot change the memory chips

JP6 PVCC/LVCC This jumper is used to select the operating voltage of the trace board. PVCC
is for 5 volts and this jumper must not be changed.

JP6 selects power voltages and your pod may not survive. There is no warranty for this easily
identified condition.

Trace User Input Connector: (J3)

The trace board contains a 15 pin D shell connector. Refer to Figure 4 for its location. This connector
provides 8 user input signals to be recorded in the trace memory under the Misc. column. These are TTL
level inputs. The Trigger In (J2) is also available on this connector. A special socket with clips is available
from Nohau as part number TR167 Probe. The pin assignments are as follows:

Name Pin Lead Colour of Trace Probe Cable Assembly
ExternalIn0 2 black

ExternalIn1 3 brown

ExternalIn2 4 red

ExternalIn3 5 orange

ExternalIn4 6 yellow

ExternalIn5 7 green

ExternalIn6 8 blue

ExternalIn7 9 violet

Vece 5 volt 1 not connected in Trace Probe cable assembly
Trigger In 11 red clip -white wire

Trigger Out 13 green clip -white wire

Ground 15 grey

1-12

Chapter 2: Nohau EMUL166: The Software Parts

Chapter 2 The Nohau EMUL166: The Software Parts

The Nohau Universal User Interface Seehau

The Seechau Macro based GUI is designed to provide a consistent user friendly interface for all Nohau in-
circuit emulator families. Sechau is a High Level Language (HLL) debugger that allows you to load, run,
single-step and stop programs, set and view trace and triggers, modify and view memory contents including
SFRs, and set software and hardware breakpoints. Sechau runs under Windows 95, 98 and NT.

Sechau has the capability to run over a TCP/IP stack. Sechau is also an OLE Automation server. This means
that Sechau based emulators can be manipulated from an application developed in any environment that
supports OLE Automation. OLE (Object Linking and Embedding) Automation allows one application to drive
another application. The driving application is known as an automation client or automation controller, and the
application being driven is known as an automation server or automation component. You can control Sechau
from C++, Java, Delphi or Visual Basic.

Configuring the Emulator Software Seehau.

The commands and data used to configure Sechau when it is started is contained in the file startup.bas. The
file startup.bas is an ASCII file in the default directory c:\nohau\Sechaul6x\Macro. This file is created by the
Seehau Configuration program using user supplied information about the emulator and its environment. It is
not created when Sechau is initially installed. The file sechau.ini in the c:\nohau\Sechau 16x directory specifies
this startup file.

The configuration can be started by clicking on the Sechau Config icon on your desktop. If you start Sechau
itself and startup.bas does not exist, Sechau will start the configuration program. This is a good method to
totally reconfigure the emulator software. Simply delete or rename startup.bas and you can create a new one.

Note you do not need to have the emulator connected to the PC to run the Seehau Config program. You do
need the emulator connected and with the jumpers properly set in for Sechau to operate properly. For more
information on macros; see the Macro Section in this manual.

You can access the emulator and trace setup windows from within Seehau under the Config menu item in the
main window. Click on Emulator or Trace for the appropriate setup desired. Note that more detailed setup
options are available this way.

This manual assumes you are able to load the Sechau software. Make sure this is done now. If you have
trouble loading from diskettes, copy them to a temporary directory on your hard disk and install from there.

It is better to get familiar with the emulator in stand-alone mode before attempting to connect to a target
hardware system. The added complications of the target hardware may cause you undue problems at this
time. Once you have gained some skills at operating the emulator, it will be easier to connect to your target.

1) Click on the Sechau Config icon on your desktop. You do not need the emulator connected at this time.

2) Ablank Figure 1 will open. You will now configure the emulator. You will need to know what interface
connector you are using: EPC or the LC-ISA card.

3) Change the settings as indicated. Make sure you always select an E2 selection unless you have an E1
bondout controller on the original emulator series. The EPC cable and the LC ISA card are the only
appropriate choices for the EMUL166. Figure 1 shows the settings used if you have are using the EPC
cable. The EPC cable is distinguished by a male/female connector on the end that plugs into your PC
parallel port. Figure 2 shows the settings for the LC-ISA card. The Emulator Board Address dialog box is
for the address of the internal communication link from your computer. For the ISA card, the most
common address is 200. This setting can be changed on the board. If you are using the EPC (Enhanced
Parallel Cable), this address is not applicable. The EPC cable normally uses address 378 which repre-
sents the LPT1 port on your PC. It can use other LPT addresses as well.

When all the information has been entered in Figure 1 or 2, pressing Next will open up Figure 3. It is
possible to operate the emulator remotely via a TCP/IP stack. Contact Nohau Technical Support at
support@nohau.com or (408) 866-1820.

2-13

Chapter 2: Nohau EMUL166: The Software Parts

Figure 1 Figure 2

uP Clock: The internal CPU clock. This is usually the oscillator or crystal multiplied by 4 if the controller is in
PLL mode. If you have a 5 MHz crystal installed, the CPU frequency will be 20 MHz. This setting is used
only for the calculation of the Trace timestamp. It has no effect on the operating speed of the emulation
controller.

Processor: This is set to C167-E2 or C167CR-E2. This can be changed only through the configuration
program or be editing startup.bas. Only early models of EMUL166 have an E1 bondout.

ON Chip ROM size: this tells Sechau the size of the on chip ROM or FLASH memory in your controller.
We do not have any ROM here since we have no target so set this to NONE. (default)

4) Confirm your settings are the same as in Figure 3. Set the frequency to 20 MHz. This entry only effects
the trace timestamp. It does not effect any other part of the emulator.

5) There are plenty of interesting configuration settings here. See the online help for more information.
6) Click on Next to enter the data. When Seehau will ask if you are done, click on Yes.

7) Sechau configuration program creates Startup.bas and Sechau is now configured to run your emulator.
9) The Sechau configuration program shuts down. Sechau is ready to run the emulator.

If all this completed without any errors, you are ready to run the Seehau User Interface after you have
connected and powered up the emulator EMUL166-PC. Do not connect the power supply to the emulator
yet. The emulator is powered by 5 volts regulated at the standard power supply socket J10. The center pin is
positive. The emulator jumper settings will be the default for this part of the manual.

Haw Corfig

Figure 3 i —_—
WP Clock; {20 iz
Reguired Figkiz
DnChip FOW 5w Wamar: B0
— ;
=T CE5EL: HOHE
Enis Canily o e WO PariErered | e e e o
r .?”Lm-" I Eskaimal My
. r 'l:;*p"-'-"‘“ I~ #Fam Enabie
v e o
=0 I BaotSireg Liv DR
. I Asco I Farl 0 Dapmice
:I [~ P
[~ CRPCONZ ™ Mask NT on siep
Cancel | _Heip _-Prey | tea |

Chapter 2: Nohau EMUL166: The Software Parts

Important Software and Hardware Notes:

Always use Uninstall to unload any existing version of Sechau from your computer before loading in another
copy. Do not simply delete the Sechau files and/or folders. Do not install Sechau on top of an existing copy.
Sechau will not allow this action. Under My Computer select Control panel, then Add/Remove Programs.
After Uninstall has run, you might want to delete any files and folders that Uninstall did not delete. Save your
personal macros and source files first. Pay particular attention to startup.bas in the Macro directory. You may
not want to use your old copy of this file so make sure it is erased.

Do not leave the emulator powered for extended periods of time without Sechau active. The pod will be in an
uninitialized state with unpredictable results. There are no reports of damage resulting from this.

Pay attention to the power-up and power-down sequences of the emulator and a target system. When
powering up or down the system: the target must never be powered when the pod is not. Power flowing from
the target into the bondout controller will damage it. Power up the pod first, and power it down last.

Starting the Emulator and Seehau

1) The two clock jumpers JP7 and JP10 must be in the upper position i.e. “POD”.

2) T Pwr (JP5) must be connected. This jumper supplies power to the bondout CPU. This jumper is located
between the PC connector and the power supply socket.

3) If you are using the EPC, the EPC power jumper (JP6) must be connected to send power to the EPC.
This jumper is located beside the power socket opposite side of the T Pwr jumper. If you are using the
ISA card, this jumper must be left open or the power from the ISA will conflict with your power supply.

4) All the 13 jumpers on the end edge of the board must be connected except for JP15 (P6.0 or CS0). For
the 5 that have dual pins, the position is lower or close to the PC board. All these jumpers may not
absolutely be needed in order for this example to work.

5) Connect the cable between the PC and the 25 pin connector on the emulator board.

6) It might be a good idea to double check your settings.

7) Plug in the Nohau 5 volt power supply.

8) The green RUN and perhaps the red RST LEDs will illuminate with the EPC cable connected.
9) Double click on the Seehau 16x icon on your PC desktop.

10) Seehau will configure itself from startup.bas and may present this message asking if you want to reset the
emulator. The green RUN LED is probably on: Click on Yes. This gives you the opportunity to recon-
nect to a running emulator if you had shut down Seehau previously,. “Mac” will be displayed in red at the
bottom of the main window while startup.bas is running.

11) The red Reset LED will then light and then both it and the Run led will go out. The Sechau interface will
finish loading itself . Position and size the main window to your preference. You can open up new
windows. They are found in the New menu item on the main Sechau window.

Problems ?

Problems are usually from the EPC PWR, T PWR or the clock incorrectly connected. Review instructions 1,
2 and 3. Make sure the cable to the PC is correctly connected. If are using the EPC, try it without a printer
connected. Do not have the emulator connected to a target system or adapter. You should have a 5 MHz
oscillator module installed to get a 20 MHz CPU frequency. Set your PC parallel port for “Output Only” in the
BIOS setup. It may not work well in ECP or other modes. Turn on the 5 volt supply by connecting the 5 volt
cable to J10 first, then connect the mains AC power. This creates fewer turn-on transients.

Try another PC. Reload Sechau. If you do this, use the Windows Remove Programs found under My Com-
puter, System. This way, all files and registry entries are properly deleted.

If all this fails, please contact your Nohau representative for technical support. support@nohau.com.
I set my windows up as in Figure 4. I resized the existing windows and opened up the Trace window.
2-15

Chapter 2: Nohau EMUL166: The Software Parts

Figure 4
Shutting down Seehau:

1) Click on the X in the upper right corner or select the menu item File, Exit. Figure 5 will appear.
2) You can save your setup in startup.bas or a macro file of your own naming.

3) Ifthe box Use as Default? is enabled, this file will be used when Seehau is started.

4) This macro will save those items enabled in the Macro Save Type area.

5) Select No Save and exit from Sechau. This will enable a fresh start for the examples.

(G Senltioe_____________________HE
T T = =) =

Figure 5) Butlon_deletn B3 8] larked RS
B bt ssupBaS) Siwin bas
& Dulfl b]S loppd BAE

B bk e A5 [Tugos L] BAE:
3 kacrbacabacm B89 8] sl lopped BAL
B kst edlwra BAS

Flepwe:r |EROTHED | G |
s 3 hpe [Pohws Muac =] oo |
Mk s Tope HoSam |

Flog Fohtw Fowedm | o i)

Chapter 2: Nohau EMUL166: The Software Parts

Seehau Commands

Seehau Commands are used communicate and control the emulator hardware and the Seehau Software
Debugger. These commands are used in the Sechau Macro facilities such as user macros, emulator startup
configuration and for Sechau configuration items in general. Commands allow the Sechau debugger software
to be a very flexible and powerful tool. Modifications and preference settings are easily made by the user. A
Macro as defined here is a collection of commands in a text file that are executed by the Sechau debugger.
Sax Basic is included in Sechau and permits powerful IF.. Then statements to be used in your macros. If
Sechau is used as an OLE Automation Server, the commands are executed from the automation controller.

Macro Construction

These Macros can be supplied by Nohau or constructed by the user using the built-in recording facilities or by
hand with any ASCII editor or with the Sechau Macro Editor. The Macro Edit window is shown in Figure 6.
The macro recorder and editor are found under the Macro menu. The resulting filename.bas files are simple
text files and can be modified at any time with a text editor regardless of how the macro was originally
constructed. These files are stored in the nohau/seehau/macro directory on your hard drive.

Figure 6

Macro Execution

Macros can be executed by Sechau during its startup phase or manually by the user using the Macro/Run
command. Individual commands can be executed by direct entry in the main Sechau window. Figure 7
illustrates the dialog box at the bottom of the main window for direct entry. An example is shown. This box
can be opened up to display a list of the recently used commands. This eliminates the need to retype most
used commands. The box at the bottom of Figure 7 where the word “Done” is where Sechau puts the results
of command operations. Not all commands display a result. Note the Macro menu item expanded at the top

of the window.
EIEH Wars How Hon Eresbpeaic [onfig Soues indea Hap

A e Bl
K el A TBISESLSEY T
Figure 7 = o Lo =
ap om
2 A - J
Shose
L = [eD4RE:
1249 ADDESEL]L = CmDOOSO0:
| FUSCOMN] = OmD4AE:
r{] _mimde]]);
eEimee = |TIHET)ceimen :I
am CAFEEL = : el =
0 | Ll_l
PlllMlm:hllll--:I-:I-mlulnnwmhllﬂlmlhhdmv a.p wrd_taighl 500" ﬂ

2-17

Chapter 2: Nohau EMUL166: The Software Parts

Command Format

Commands are of the format groupname commandname fields. They are in ASCII text and the names are
self-explanatory. Commands are written in upper and lower case letters for easy readability but Seehau is
case insensitive here. An example of a command is: Cfg PortAddress “378”. This command tells Sechau
that the emulator hardware is connected to the PC port at hex 378 (LPT1). Descriptions of various fields (if
applicable) are contained in the Seehau online help.

Command Examples
An example of directly entering a command:
In the dialog entry box enter: ~ Wnd_height “300” and press return.

The open window or the one most recently selected by a macro command will have its height adjusted to 300
pixels. To modify the main window, you may have to type in this command first:

Wnd_select “Seehau for Emul16x™

This example uses the Emul 166 Emulator for the Siemens C166 family. Enter the appropriate fields for your
system as indicated as the caption on the main window.

If you enter these commands in the file /Macro/startup.bas, they will be executed everytime you start up
Sechau. You can also make your own Macro that saves Sechau configuration setup. You are given this
opportunity when you leave Sechau. Figure 8 shows the options you can select:

Save Settings

Save in: I £5 Macmo

Figure 8 2] Buttor_delete. BAS Started.BAS
@ button_setup BAS Startup.bas
@ DefBine. bas Stopped BAS
@ loadntrace. BAS TraceStarted BAS
@ loadntracehide. BAS TraceStopped.BAS
@ loadntraceshow BAS

File name:

Save I
Save as type: INnhau kacro j Cancel |

"Macra Save Type Mo Save |

v i v W
¥ Canfig ¥ Buttons I wiindows ¥ Usze Az Default?

Config:

This enables the saving of hardware configuration items such as breakpoints and triggers.
Buttons:

This enables the saving of the position and type of buttons displayed on the main window.
Windows:

This enables which windows are displayed and their position and size.

Use as Default ?:

The specified file will be the one used by Seehau on startup. Startup.bas is the initial default. If startup.bas is
not present, Sechau will make one from a composite of various existing .bas files. You can specify the default

to be your own Macro.
2-18

Chapter 2: Nohau EMUL166: The Software Parts

Command Groups:

Macro commands are divided into 12 groups. Each group represents one basic function. The group is speci-
fied in the first part of the command name as in Brkpt clrBrkPoints. Sechau online Help files contain
detailed information of all the Macro commands. Consult the online Help file for details on fields associated
with the commands and for more examples.

1) BrkPT: these commands are associated with breakpoints. i.e. Brkpt clrBrkPoints clears all the
breakpoints.

2) Cfg: general emulator configuration settings. 1.e. Cfg_map maps emulator memory to the target.

3) Data: operations on data such as move, search and set. i.c. Data_Move moves data from a source

to a destination address.

4) File: operations on files such as symbol table and user code loads into the emulator or target
memory. i.e. File LdCode filename loads the specified user object code into the emulator.

5) Hip: Help commands. Displays help on various subjects from the Seechau Online help file.

6) Src: Program Commands. These refer to the user code in the source window. i.e.
Src_SelectModule selects the source module to be displayed in the source window.

7) Reg: CPU Register commands used to inform Seehau of the name, size and address of the CPU
registers. These are used in the operation of Sechau and also to display registers in the Register window.
i.e. Reg_Size “16” informs Seehau the previously selected register is 16 bits wide.

8) Run: commands used to start the emulation CPU. Commands include Run Break, Run Stepover
and Run GoForever.

9) Symbr: Used to access commands regarding the source code.

10) Trace: Commands that control the hardware Trace functions. i.e. Trace TraceBegin is used to start
the Trace.

11) View: These commands control the Inspect, Evaluate and Watch windows. i.e. View_Evaluate

passes the expression to Sechau that is to evaluated.

12) Wnd: Windows commands. These are used to control aspects of the windows including position and
size, button definition and show/hide windows.

Quick Saving a Configuration Menu using the Apply Button
1) The configuration menu to be saved must be open and its Apply button must be visible.
2) Inthe Macro menu item, select Start Recording. The configuration window will disappear.

3) Re-open the configuration window from the appropriate menu item. Click on Apply. The settings associ-
ated with this window will be saved.

4) In the Macro menu, select Stop Recording.

5) The Save Macro window will open giving you the opportunity to choose the filename for the newly
created macro. See Figure 8. Enter a filename of your choosing and click on Save. The macro is ready
to use and will accurately re-create your configuration settings.

Configuration menus are also saved when general Sechau settings are saved upon exit or through the Config,
Save Settings menu.

Chapter 2: Nohau EMUL166: The Software Parts

Creating New Buttons

1)

2)

4

5)

6)

7)

8)

9)

Buttons can be created and deleted on the icon bar in the main menu. A created button can be attached
to a macro you have created. The icons themselves are Windows bitmaps (*.bmp) and are easily created
with virtually any graphics program.

Open the menu Config, Buttons and an empty Figure 9 will open.

Customize Buttons E I

Figure 9 v | [ame: Iwait Position: I

Bitrnap: I C:%MohautS eehaul BxhBitmapshB uttont. bmp _I

Hint: |‘T'u:-u can tppe any hint in here that you want |

— Command Type:
o Maco " Command " Meru lkem
Cratd: IStartup.bas ;I_I
— Special Type:
' Mone " Break " Trace Stop
E wit I " Go " Trace Start

Open the bitmap browser by clicking on the ... button at the right side of the dialog box.

Figure 10 will open up showing the bitmaps in the Bitmaps directory. Note that when a bitmap is high-
lighted, its image appears on the right side of the window as in Figure 10.

Highlight ButtonW.bmp. Click on Open and its image will appear as in Figure 10.

B
Lok [= B #E=m vam it
#Ettndbrg @ Btonibon @ Bl b
warnrbpsora b O Bustion'S bangs o Btk b o ButhorH b
Buttonilbrg] Buttorki brp T (T
kel bop g BseTbee R BaeDbee g B o
Boibrg @Bsodbry @ beoEbep 5 Bk
o Busthord b o ButionF. banp o Buthord_ e

Figure 10

I

Flepaes |kt o | Opan I

Files ol he | H irmapr [b =l Lol |
™ Opan sz psd-orlp

In the Hint: dialog box shown in Figure 9, type in the sentence as shown. Position the cursor on the W
icon and note this sentence will appear in a yellow box. This will be used in the main window.

In the Command Type: area, click on Macro. This area indicates what type of action will be associated
with the new button. The options in the Cmnd: box will change according to the Command Type setting.

In the Cmnd: dialog box, select startup.bas. You can choose the down arrow to open the Macro directory
or use the browser by clicking on the ... button.

Click and drag the W icon to the main window to the right of the EXIT icon. The W icon will be placed at
this point. Click on Exit in the Customize Buttons window shown in Figure 9.

10) Confirm that if you place the cursor on the W icon the hint you entered appears.

11) Click on the W icon in the main window and the startup.bas sequence will be executed.

12) To remove a button, drag it back to the Customize Buttons window. To quickly access the Customize

Buttons window, right click on the button and select Buttons. The Customize Buttons window will appear.

2-20

Chapter 3: Nohau EMUL166: Running the Timer Program Example

Chapter 3 The Nohau EMUL166: Timer.abs Example

Running the example program TIMER.ABS

1)

2)

o}

4)
5)

6)

7)
8)

9)

Nohau provides a small example program called time.abs. It is found in the c:\nohau\seehau 16x\examples
default directory. The source code, time.c is also present in this directory.

Start the emulator as per the instructions in the preceding chapter Starting the Emulator and Seehau.
Resize the windows as in Figure 4 in Chapter 2 but do not add the Trace window.
Open the menu item File, Load Code or press CTRL L.

A window similar to Figure 1 opens up. Click on the arrow at the end of the “Files of type” box and select
ABS Files. Your window will now look like Figure 1.

S
kg [Ewemin = & ol = ml
Figure 1 o T st

Flepwes | | e |
Fies ol pee: [T - | |

Highlight Time.abs and click on Open. You can also double-click on Time.abs. Time.abs will load into the
emulator. The source window will show a JMPS at the reset vector (00000). The jump is to CSTART.
This is at memory location 200 and you may scroll there to see it.

Click on the Step Into icon and the program will run to the start of MAIN.

Note that the time.c tab appears on the Source window. You can easily switch between assembly and
source language by clicking on these tabs.

Right click on the source window with time.c tab selected and select Mixed Mode. You will see assembly
code mixed in with the appropriate source lines as in Figure 2. Note the program counter (IP) indicated by
the blue blocks at the start of MAIN. Click on a line number to set or unset a breakpoint.

10) Remove the Mixed Mode from the Source window so only the C source code remains.

11) Click on the Source Step Into icon repeatedly and the program counter will advance through the CPU

initialization code. Note that where there is assembly code only, the steps are at that level.

12) Click on Config, Save Settings and click on Save to save your setup. You may rename your startup file.

1 = =]
ey e |
Figure 2 ggg urmagresd char charloc :.l
240 o LT himr D s=Hirmt ¥ et
241
242 vaid msiniwaid]d
28 diswdnl)
46 E ¥ wldAF
247 BIFSCOH] = l.:[IH.F . .
243 ROOFSEL]1 = (WODED =i
247 _E':II'I:I':'\EI
250 Ciwsr = (TIHE®]&Eiwen)
]| L|_I
ik nona |Fasd onlp | Fle trec Boduler TIFE Furcon: man =

3-21

Chapter 3: Nohau EMUL166: Running the Timer Program Example

Demonstrations of Seehau Features
Watching Data in Real-time with the Shadow RAM

The Nohau Shadow RAM feature allows you to view memory contents in real-time without stealing cycles
from the emulation CPU. This example assumes you have completed all the steps so far in this manual and
that Time.abs is still loaded in your emulator.

1 Open a Data window either by clicking on the Data icon or selecting New, Data.

2 A window similar to Figure 3 will appear. The data will be in hex: not ASCII as shown. Resize it as
needed. In the address box at the bottom, highlight the existing address and type 5000 and press Enter.

Figure 3
Goto Address Chrl+4,
Edit S
. Dizplay &z Alt+Dr

F | g ure 4 Address Space .. 4
Blaeh... F
|nhibit Beadback
Synchronize
Find .. Chil+F
Find Mext F3
Find Previuos Alt+F3
Save Cti+5
Settings... 4
Change window caption .

Right mouse click on the Data window and Figure 4 opens. The idea is to change the Data window to
display the data in ASCII format and get data from the Trace Shadow RAM in real-time.

Select Display As ... and select ASCII. Note the viewing options available in this window. Click OK.
Right mouse click again and select Address Space ... and select TR SHADOW.

6 The address at the bottom represents where the mouse is pointing to. The box highlighted in blue at
location 5009 in Figure 3 is the last location where you clicked the mouse on. Data in red indicates that
which has been modified by the last emulation run. You will not see ASCII data shown if time.c has not
been appropriately initialized at these locations by Time.c running for at least a few seconds..

W

7 Click on the GO icon or press F9. The program time.c will run.

The time will be updated in real-time. No CPU cycles are stolen to accomplish this. The clock seconds
will increment at one second intervals.

9 The Shadow RAM will be frozen in its current state when the trace memory is halted. This gives a useful
indication of the state of the memory contents when the trace was stopped. The trace is usually stopped
because of a trigger becoming true but can also be stopped and started manually in real-time.

3-22

Chapter 3: Nohau EMUL166: Running the Timer Program Example

Graphical Display of Data in Real-Time Using a Gauge

Sechau has the capability of displaying data in many different formats. The Shadow RAM allows the real-
time viewing of data from emulation or target memory and many internal registers. Nearly any register and
memory location that is written to will have the write data recorded in the Shadow RAM. Shadow RAM is
superior to Dual Port RAM in that data from outside the emulator (i.c. on the target) can be seen in real-time.

This example assumes you have Timer.c loaded as per the instructions in this chapter.
1) Open a new Data window. Note that you can have multiple windows of each type open at the same time.

2) Right click on the Data window and select Display As..., Figure 5 is displayed, then select Gauge. Note
the different types of data display offered. Select OK to close this window.

Format Dialog |
Mumberaf bit—— [Twpe
Figure 5 Gt " Ascii " Signed " Custam
 16-hit
S T " Binary = Unsigned v Gauge
Gt " Hexadecimal © Float " Gragh

L]

1 o g e e

Apphy | Ok I Cancel Help |

3) Right click on the Data window and select Address Space and click on Shadow to access the Shadow
RAM.

4) In the dialog box at the bottom of the Data window enter 5017.
5) Resize the data window so the display is proportioned correctly as in Figure 6.

Figure 6

jonoo=n 17 j
vale D318 [B01 TS HELC]

6) Click on the GO icon to start Time.c
7) Note the blue area in Figure 6 changes each second. We can adjust the display to make it more readable.

8) Right click on this data window and select Settings, Gauge. In the Gauge Options window, enter 48 in
MIN and 58 in Max. The data can have values between hex 30 and 39 which is the ASCII representation
of the numbers 0 through 9. This corresponds to decimal 48 to 57. We use 58 rather than 57 as expected
so 48 and 57 do not occupy the same space. Click on OK. Note we did this without stopping the emula-
tion. The display will look better now.

9) Note that we can change the refresh rate under Settings, Timer and other Gauge formats such as Needle
in the Gauge Options window. Colors can also be changed here. Experiment as you wish.

3-23

Chapter 3: Nohau EMUL166: Running the Timer Program Example

Graphical Display of Data in Real-Time Using a Graph

1) In addition to the gauge display mode, Sechau can also display your data as a graph. The data collected
can be saved to a file. Right click on the graph to see the local menu. Click anywhere to close it.

2) With a data window selected, right click and select Display As ... In the Format Dialog box, select Graph
and click on Ok to close this window. You can use the gauge window from the last example or open a
new data window. A blank Figure 7 will appear. Size it as appropriate.

3) Click on the GO icon to start timer program unless it is already running.
4) The graph will start to collect data and scroll to the side.

5) Right click and select Settings, Graph and enter 40 for the Y Axis Min and 65 for the Y Axis Max. Click
OK. This will improve the way the data is displayed in this window.

6) Right click and select Settings, Color. Change the foreground to red and the background to grey.
Click OK to close this window.

7) The display will be similar to Figure 7.
8) Shut down Sechau without saving.

Data_1 _ (O] <]

N
|

Walue 0x30(48) | 5071 F(SHAD 0]

Figure 7

Setting Breakpoints

The EMUL166 has both software and hardware breakpoints. These breakpoints are no-skid in that they do
not execute the instruction they are placed on.

To set a software breakpoint, click on a line number. This area will turn red.

To set a hardware breakpoint, click on a line number with the Alt key depressed. A crosshatch red box will

appear. Breakpoint information can be viewed in the View, Breakpoints menu item. Click again to remove the
breakpoints.

Chapter 3: Nohau EMUL166: Running the Timer Program Example

Program Performance Analysis (PPA)

Sechau has a Performance Analyzer which provides statistical information on your program execution.
Information on both code and data accesses are provided and this information can be saved to a file. Figure 8
is an example of a PPA window with sample data from the timer program. Data can be displayed as a bar
graphs (as shown) or as numbers. The PPA window is configurable in the local menu which is accessible with
a right mouse click on the PPA window.

Figure 8

Chapter 3: Nohau EMUL166: Running the Timer Program Example

1) Load the timer.c program in the usual fashion. Click on the step into source to come to the start of main.
This ensures the symbols will be available to the PPA.

2) Select the PPA screen in the Tools, PPA in the main Sechau window. An empty Figure 8 will appear.

3) Right mouse click on this window to open the local menu and select Add Bin. You can also click on the +
button in the PPA window.

4) An empty Figure 9 will appear. This is where you select modules, functions or address ranges for the bins
where the information will be stored.

5) Click on the Symbols box to activate the browse feature.

6) Double clickont i me to bring up the module names from the symbol browser.

7) Hold the Ctrl button and click on the indicated names to select them. You can use the shift key also.
8) Click on Apply and OK. Each of these functions will now be listed as in Figure 8.

9) Click GO on the main icon bar to start the emulation.

10) Click on the Start icon in the PPA window to start the collection of data. You could also click on the GO
button in the PPA window to start the emulation and the PPA at the same time. The GO button turns red
and this now becomes the STOP button. It will stop both the emulation and the PPA process.

11) The data will appear in a few seconds and will update periodically. Click on the Code and Data tabs to
view the different types of PPA data.

12) Right click on the PPA window and select Show Bar Graphs.

13) Right click and select Colors and right click on the red square to replicate the same color scheme as
Figure 8.

14) Click on Stop in the PPA window to stop the collection of data. See 10) for the location of the STOP
button.

The emulation must be running in order to start the PPA. If you stop emulation while the PPA is running, it
will take some time for this action to be recognized.

Figure 9

Chapter 4: Nohau EMUL166: The Trace and Trigger Functions

Chapter 4 The Nohau EMUL166: Trace and Triggers

Trace and Trigger Overview

The trace memory and triggers can be configured and viewed without intrusion into real-time emulation. This
is accomplished with a dedicated 25 MHz housekeeping controller rather than stealing cycles from the emula-
tion CPU. The triggers are versatile, yet easy to configure and modify.

Triggers can be set on addresses and data ranges. They control trace recording or cause the emulator to stop
the target depending on the options set. Trace and Triggering can trigger and record all internal and external
accesses.

Full pipeline decoding ensures only executed instructions and data read/writes are captured as such and no
false triggering occurs. The trace memory can be saved to a file. Source and assembly code is displayed in
the trace window. The trace window can be configured as to the fields displayed.

Trace Window Display

The fields displayed in the trace window can be selected depending on your needs. Figure 1 shows the trace
local window. The meaning of these fields is explained in the on-line Help files. The XDATA, ID [A and
OD_OA busses are internal CPU busses brought out by the bondout controller. These fields are available to
the user. The emulator uses these busses to access the internal areas of the controller.

Dlwrods B
Figure 1 Synchronze Source Window

Show TimeStamp
Aelaties TmeStamp
Corwert Cycles bo Time
Shewe Misz, Data
Shew Pod Pins 7.0
Show LAD
w Show Dala
Show Status
Show 1&:1D
Show [ORA]-=DRD0WT- [0hA)
Shew XKD
Sheow CP:SP
v Show Symbol
Compiessed
Al Dpkians...
Trace Config...
Seltings 2
Change Caplion. ..

The trace recording can be manually turned off and on with the trace icon on the main menu. When the trace
is not recording, the Shadow RAM also stops providing a snapshot of the system memory.

With the timer program loaded and the trace window open, run timer for a few seconds and then stop the
trace with the trace icon. This is the icon with TR indicated on it. E It will turn green.

The trace window will be filled with frames. Try activating certain features in Figure 1 to see the effects.
The trace memory is where the frames are stored. The triggers have the power to stop the trace recording,
and/or emulation and to control what is recorded in the trace memory (filtering).

4-27

Chapter 4: Nohau EMUL166: The Trace and Trigger Functions

Trigger Example on an Address and Data Qualifier.

Triggers are probably the most powerful facility possessed by an emulator. This example will stop the emula-
tor when the seconds field in the clock equals 4. This is represented by a byte write to memory location 5017
with the ASCII value of 34.

1) Setup the emulator to run the timer example as described in Chapter 3. Make sure the data window is set
to view ASCII data as in Figure 3 in Chapter 3. This is not needed for the trigger to work but for your
inspection of the 5017 memory location. Open the trace window and position the windows so the Source,
Data and Trace windows are visible.

2) Open the menu Config, Trace from the main window. Figure 2 appears. This is where the triggers are
configured. The timestamp timings are derived from the value in CPU Internal Clock box. Note the tabs
at the top showing the three Triggers and the Filter as well as the Trace Setup.

Figure 2

3) Activate the Yes, on Trigger box. When a trigger occurs, the emulation will be stopped.
4) Click on the Trigger 1 tab. A blank Figure 3 opens up. The values of the qualifiers are inserted here.

Trace Setup Trigger 1 ITngger 2| Trigger 3] Fiker |

. Ardres e Gyt e Tme Giarl Adrra e End A dra s
Figure 3
T o F
Diaka Tri gy er Types Lirwe ahie High'vale
 Encikad Duta Mok (BRI sedcass Mask FFFFFF
ok | ety | concer | Hep |

4-28

Chapter 4: Nohau EMUL166: The Trace and Trigger Functions

5) Right click on the Address Cycle Type window and select Add. The Edit Trigger Qualifier dialog box in
Figure 4 opens up. Fill in the fields as shown. Make sure you select Data R/W. Press OK.

6) Repeat for the Data Trigger Type and enter the value of 34 in each field as in Figure 5. Click OK.

7) In the Trace Configuration menu as shown in Figure 3, enter O0FF in the Data Mask field. Note you can
use this field to enter a “don’t care™ condition on a bit by bit basis. i.e. 000F will only use the lower nibble
of the data qualifier. This can also be done in the address mask field to mask off address ranges.

Edit Trigger Qualifier]| Edit Data Qualifier |

Cycle Type————————— Trigger Mode
" Include sl & Data B AW " Range v Patterm
¢~ Opcode Fetch ¢ Excludesl |} — T -
in: |34 -
Begin [5017 =] Begin: =
E”d3|5ﬂ1? j End: |34 j
ak | Cancel | oK Cancel |
Figure 4 Figure 5

8) Click on OK to enter the data.

9) If the emulation and trace were running during this time, temporarily stop and start the trace to register the
trigger data. Note that emulation will not be slowed or stopped during trigger setting or trace stopping.

10) Start emulation if not already running and when the seconds indicator reaches the value of 4, emulation
will stop. The GO and TR icons will turn green and the words Stopped will appear twice in the lower left
corner of the main menu.

11) You will get a trace window similar to Figure 6.

Figure 6

12) The arrow at B is the write of 34 to address 5017. w1 means a 1 byte write bus cycle. The instruction
that did write this is at arrow A.

13) The instructions at Frame -4 and -3 are prefetches to the CPU pipeline. The fact that the instruction fetch
at A is followed later by the write at B clearly shows the pipeline effect. Frame -2 is the subsequent word
fetch corresponding to the first fetch shown in Frame -3. 002 signifies a 2 byte fetch or a 2 byte pipeline
flush. Frame -2 is repeated inside Frame -3 where it was dissassembled.. Frame -2 is for reference to
the bus cycle that actually occurred. It is placeg in2F9rame -2 for readability.

Chapter 4: Nohau EMUL166: The Trace and Trigger Functions

Trace Filter Example

This example uses the Filter tab to record only certain frames in the trace memory. We will record only byte
writes of 34 to address 5017 in the trace memory.

1) Open the Trace Configuration menu in the Config menu item. Figure 2 will open.

2) Deselect the Trigger 1 checkbox. This disables the settings we placed in Trigger 1.

3) Desclect the Break on Emulation? checkbox.

4) Click on the Filter tab.

5) Enter the data in the same fashion as in Figures 3, 4 and 5. Except this time in the Filter tab menu.
6) Set the Data Mask to O0FF as before.

7) Click on OK to enter the data.

8) Start the emulation as before and let it run for a few seconds and stop emulation.

9) Figure 7 will be displayed. Note that only byte writes of 34 to location 5017 are recorded.

Figure 7

Note the timestamp. It shows that each write was 67 usec apart. There are many other combinations of
triggers and filters you can use. In each of the Address Cycle and Data Trigger Type fields you can enter 50
qualifiers.

This filter mode has been the Normal mode. This mode records qualifiers within a range of addresses OR
data values. If you set this to record a function, any functions called by this function will not be recorded.

With the Window mode, Trigger 1 is used to start the trace recording and Trigger 2 is used to stop the record-
ing. Any called functions from within a specified function will be recorded in this case. In Figure 2, click on
the Window check box under Filter Mode and the triggers will turn to start and stop types.

Chapter 5: Nohau EMUL166: Connecting to your target system

Chapter 56 The Nohau EMUL166: Connecting to your Target

Clocks, Oscillators and Crystals

The maximum frequency of the EMUL166 is 33 MHz. This is the ECLK signal located on the emulator
board. The most used frequency is 20 MHz. This is usually supplied by a 5 MHz crystal or oscillator which is
then multiplied by 4 to obtain the required 20 MHz. See the Siemens User manual for more information on
clocks.

Crystal Capacitors

If your application uses a crystal please note that Siemens specifies the capacitors are two different values.
While most crystal oscillators use capacitors of the same value, stability is increased with different values.
Siemens have an application note on this subject named AP242003 and it can be found on the Infineon web at
http://www.infineon.com/products/ics/34/index3 .htm. Note that many Phytec evaluation boards use same
value capacitors and you may need to add an additional capacitor to ensure adherence to the Siemens specifi-
cation. Suggested values at 5 MHz are 22 pf (input) and 47 pf (output) with a resistor value of 390 ohms.

EMUL166 Oscillators

Earlier models of Nohau emulators had a plug in oscillator package of either 20 or 5 MHz. Later models have
this oscillator soldered in for reliability. Nohau offers a simple adapter board so you can easily change oscilla-
tor values. This is shown in Figure 1 and both oscillator and crystal versions are offered.

This adapter connects to JP51, JP7 and JP10. The adapter will plug into the lower set of jumpers i.e. target.

Some versions may have a PLL IC and the ability to send the clock to the target. Contact Nohau Technical
Support for the latest information. support@nohau.com

Figure 1

Chapter 5: Nohau EMUL166: Connecting to your target system

Connecting to Your Target Hardware

Connecting an emulator to a target system can require some careful work. The Nohau EMUL166 mimics the
C166 family as closely as possible. There are a few issues that can cause particular problems. Here are
some useful hints:

1) Try the emulator in stand-alone mode first. Get it to work this way first. You do not have the complica-
tions of your target buses to make things harder to resolve.

2) If you connect the emulator to the target without making any changes to your jumper or software settings:
the emulator should still work. If it does not, check for shorted or incorrect signal lines on the target. Get
someone ¢lse to check your board layout. Many problems are finally traced to crossed lines.

3) Once you have the emulator working from its internal memory - you can switch to the target memory.
4) Remove the RESET and READY jumpers. If your reset stays on too long, the emulator will never run.

5) Measure the CPU frequency at the ECLK pad on the emulator. See Figure 3 in Chapter 1. Make sure it
is what you expect it to be. If your program crashes, make sure the frequency is not changing unexpect-
edly.

6) Most users prefer to bring the target’s clock up to the bondout controller. Make sure your clock pins are
correct. JP10 and JP7 should be in the lower position.

7) If you are supplying power to the target and the emulator separately, make sure JP6 T-PWR is not
connected. Make sure you use the proper power sequence to protect the bondout. Never allow the target
to have power without the emulator being powered up.

8) Consider purchasing an evaluation board to serve as a reference design. Phytec boards are good choices
but you should consider that some do not use the Siemens chip selects but rather a GAL device for
addressing. The C161 and C164 are like this. The early C161 does not use the Siemens bootstrap mode.
Adapters are very inexpensive for these boards. The C167 board uses CSO for the FLASH and CS1 for
the RAM and this setup is very easy to use.

9) To test target RAM, use the data window to change a memory location to different values such as FF or
00. The emulator must return the same value that you entered. You can use any erroneous bit patterns to
help determine where the error is.

10) Design small test programs that you can send to Nohau technical support. Please include the source and
any compiler project files if these are used. The ability to replicate the problem is important and helps a
great deal.

11) The reset location (00 0000) will normally contain a valid jump instruction after the user code has been
loaded. If it does not, make sure you are in the correct address space such as external or single-chip
mode and that you are not accessing some ROM.

12) If you have some RAM on your target and you have this mapped to your emulator: you should be able to
write values to this RAM from within a Data window and get the same value returned. You should be
able to do this on adjacent bytes and also on a whole word. If you do not get the same value returned, you
are either in some sort of ROM, nonexistent or defective RAM or a setting could be incorrect.

If you can write correctly to one byte yet not to the next, this nearly always means adapter problems or
crossed data lines on your target..
Conclusions

This explains a portion of the power of Seehau and Nohau C166 family emulators. We have not explored the
RTOS support, code coverage, compiling and editing abilities of Sechau.

For more information, contact your local Nohau representative or Nohau at www.nohau.com.

For applicable Application Notes see www.nohau.com under Technical Publications.

5-32

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

Chapter 6 Debugging with the Infineon E2 Bondout
Microcontroller
Introduction

There are several possible methods to emulate a microcontroller and each method has its benefits and draw-
backs. Infineon chose the bondout controller method for its C166 family and Enhanced Hooks for its C500.
This article will focus on the E2 bondout that emulates all C166 family members except the C166 itself. The
C166 has its own bondout.

Nearly all emulators made for the C166 family utilize the E2 bondout although there are a few that use stan-
dard production chips. The E2 replaces the older E (or E1). The Nohau EMUL166 is shown below without
its case. The E2 bondout is on the right side and has a silver top.

Internal or External Mode

The C166 can operate in either single-chip or
external mode. In External mode, address
and data buses are used to access external
memory via ports PO, P1 and P4.

In single-chip, the instructions are fetched and
data is accessed from on-board ROM or
FLASH and RAM. There are no data and
address buses to the outside world that an
emulator can use. PO, P1 and P4 can then be
used as general purpose 1/0.

External mode allows an emulator to sce
operations since the buses are visible. The
emulation must be interrupted in order to read
internal registers and RAM. Real-time
operation is therefore lost. A Bondout or
Enhanced Hooks fixes these problems.

What the E2 Bondout Offers

The E2 bondout operates in both external and single-chip modes. It has extra external buses to provide the
emulator access to internal resources and information even when the address and data buses are not available
as in single-chip mode. These buses are called IA, ID, OA, OD and XBUS. Most emulators use these buses
to obtain detailed internal information and they are also displayed in the Nohau trace memory. Nohau displays
the signals it derives from these buses.

You can trigger on and record in trace memory internal events in real-time. These internal events are impos-
sible to see without a special emulation chip such as a bondout or Enhanced Hooks.

For more information see www.nohau.com under Technical Publications.

The E2 offers internal triggering, ROM simulation, and detailed trace recording all without intrusion into the
emulation.

Note: Nohau will be making some enhancements to the trace capture and display. When this is
completed, the screen shots described here will no longer match. This chapter will be rewritten at that time
to incorporate the latest chnges and will be posted on the web. The software updates will also be available
free of charge on the Nohau website.

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

Special Bondout Buses

Five buses available on the bondout are optionally visible in the trace display as shown in Figure 1. The
descriptions of the buses are general in nature and are not true for all cycles. Not all buses are shown.

Figure 1
IA Bus: Instruction Address

ROM Instruction Address Bus. This 16 bit bus shows the address of instruction transfers on the internal ROM
bus. This is visible only in single-chip mode and is not shown in the Figures.
ID Bus: Instruction Data

ROM Instruction Data bus. This 32 bit bus displays instruction and data over the ROM bus. Effective only
for single-chip and is not shown in the figures..

OA: Operand Address

This 18 bit bus displays read and write addresses. This and the OD bus are shown in the second screen shot.
The two * characters shown in the OA field signify valid write cycles that were executed. This field can be
used to distinguish between executed opcodes and pipeline flushes. This is shown in Figure 2.

OD Bus: Opcode Data

This 16 bit bus displays the data word of an opcode. Opcodes of injected instructions (into the pipeline) are
visible here. The OD and OA buses are very useful. This is shown in Figure 2.

Figure 2
6 - 34

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

XBUS

The XBUS is an internal representation of the external bus. This 16 bit bus displays the data on the internal
XBUS as well as data writes to external memory. This field is shown as XDATA in Figure 2.

Misc.

This field displays bit flags that Nohau derives from the bondout controller pins. These signals are useful to
determine certain situations the controller is in. Examples include jump taken, jump cache hit, R/W, trigger
event, operand size, and instruction or data. Eight I/O signals and the pipeline instruction counter are also
displayed in this field. This field is shown in Figure 2. Note Frame -25. The Misc. field consists of this string:

LIITTIITITIITT]
The“I”

The first digit indicates an internal condition of the bondout. This field is used for Nohau development and is
usually not visible. This bit field has no use for the user.

The “00”

The second byte is displayed in hex and represents the state of the 8 bits of user data on the input connection
J3. This is the D shell connector on the trace board. In this example the byte is at 00.

The “78”

The next hex word (7843) is divided into 2 bytes. The 8 most significant bits (78) represents 8 status signals
coming from the bondout controller.

MSB
Trigger A trigger occured during this frame.
Instruction 1 = instruction fetch 0 = data fetch
Size 1 =2 byte fetch 0 =1 byte fetch
R/W 1 = read cycle 0 = write cycle
I EXT FETCH The word fetch was internal (0) or external (1) memory space.
JC Load The Jump Cache was loaded with this target instruction (1).
JC Hit The Jump Cache contains the target instruction which will be fetched from the cache.
Jump Taken The jump or call was taken (1).

LSB

Examples:

“78” means Instruction fetch, 2 byte, Read from external memory space.
“x9” means a jump taken.

“xB” means a cache hit.

“xD” means a cache load.

The “43”

The 4 lowest bits (3) are the prefetch queue counter contents and is assigned for executed instructions. The
next higher 4 bits (4) is the prefetch queue counter and represents word fetches into the pipeline. In this
example, the word being fetched is assigned the number 4. The word being executed is that which was
assigned the number 3 in some previous frame. The word can be an opcode or data.

If the fetch or execute digit does not change as the 6 in Frames -2 and -22 in Figure 2, the counter was not
advanced because the described operation did not take place on one of the lines. Fetches and executions do
not necessarily occur on every frame all the time.
This is useful for seeing where a given word was fetched and subsequently executed unless it was flushed
from the pipeline. You can match the fetch with the execution to follow the exact bus activity.

6-35

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

Instruction Pipeline

The C166 family has a 4 stage instruction pipeline that can be demonstrated in the trace memory. The four
stages are fetch, decode, execute and write back. If an instruction is fetched, but not executed because of a
change in program flow (usually from a jump or call), these instruction(s) are flushed from the pipeline and
new ones loaded.

These flushed instructions are tracked in order that there is no false triggering on them. This tracking is
displayed in the misc. field. Unexecuted instructions must not be used as trigger qualifiers.

It is important to be able to detect pipeline effects since there is a definite delay from when an instruction is
fetched to when it performs its operation. The E2 provides enough information to the emulator in order to
decode this data.

Pipeline Prefetch & Flushes

The screen shot shown in Figure 1 resulted from this code sequence being fetched or executed:

oI OO [T (OO
o OO0 0000 OO0
oI OO [T (OO
oo OO0 O] OO
[T OO o0 COO0Cwed

The ADD at 4CA is executed and the CALLA is taken. Program flow continues at stremp at address 2AE.

Frame -54 (green) is the fetch of the CALLA opcode. It is obviously executed at frame -50 with the appear-
ance of JIMPR instruction, 400 nsec later. Since each frame records one word, Frame -54 actually contains
the first word of the CALLA, namely CA00. The ACO2 is put there for readability. Frame -53 contains the
second word 02AC. The 002 means a 2 byte opcode fetch. Remember, the C166 is Little Endian so the data
came off the bus in this order and Nohau swaps it for convenience and readability.

Frame -52 and -51 are prefetches of the CMP (4840) at 4D0 and the JMPR (3D1B) at 4D2 ! These are
flushed instructions that were prefetched, but not used as the program flow changed as a result of the CALLA
instruction. Note all this information is present in the Nohau trace plus a lot more. Interestingly, Frame -49 is
also a flushed instruction.

Jump Cache

The C166 family has a jump cache mechanism to speed conditional loops. The branch target instruction is
stored in the jump cache and each time it is needed, it is fetched from here and not from slower program
memory. This branch target instruction is injected directly into the decode stage of the pipeline. The trace
screen shown in Figure 2 was derived from this code segment:

[EENEENEN| [EENENEEEE [EENEEEE
[EEEEEEEE] [EE NN [EEENIINIIEEEEEE
[EENEENEE| [T [EEENIINIIEEEEEE
[EEEEEEEE| (EEEEEEEEN [IITTIOIITITTIIII]
[EEEEEEEE] [EE NN [T

The Branch Target Instruction is the SUB at 20C. The DISWDT is the disable watchdog timer. RO is
initialized with 8 and is decremented by 1 by SUB. JMPA tests RO and jumps back to SUB until RO equals
zero. In this case, a trigger was set for RO to equal 5, then halt emulation. This action is not visible in this
trace window.

Jump Cache Hit

Siemens states that when the cache jump instruction passes through the decode stage of the pipeline for the
first time, the branch target instruction is fetched and stored in the jump cache. This is visible in the trace
window as described here:

When the second nibble of the Misc. word contains a D (i.e. 7D12), this means the instruction is placed into
6-36

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

the jump cache. When this nibble equals B, this signals a jump hit. This instruction is then taken from the
cache and injected directly into the pipeline.

Frame -20 contains the first jump and Frame -14 contains the cached SUB. The 7D12 and the 7B34 indicate
this. Frame -14 actually has the 7B34 on the following line. Note there is no data in either the OA or OD
fields. This is because no fetch occurred.

Two for the Price of One:

The pipeline can allow the CPU to perform two operations at the same time and this is also visible in the
Nohau trace. Frames -21, -19 and -15 have two events at the same time.

Note the ** in the OA column which indicates a valid write cycle. Where is this write ? It is to memory FC00
which is equal to RO because the CP register (Context Pointer) points to FC00. This is the base of the register
bank. Recall RO is being decremented by SUB and you can see this in the OD column on Frames -19 (R0=7)
and -15 (R0=6). Frame -21 (R0=8) is the initialization by the MOV at address 20A. This is the first event.

During this time there is also a fetch of the data part of an opcode. In each of Frames -21, -19 and -15, under
the Opcode column is the second half of the opcode fetch of the frame before it.

The Opcode value for Frame -19 contains the data or second word for the JMPA at Frame -20. It is 020C
swapped to 0C02.

Triggering on Internal Data

The E2 bondout allows triggering on internal memory areas such as RAM, SFRs, ROM and XRAM. Pro-
grams can be executed in the internal RAM, and these instruction fetches can be cause triggers. Triggering
can start or stop the trace recording, provide an external output to trigger an oscilloscope or logic analyzer or
halt emulation. This is an important feature. The E2 bondout provides a way to peek inside the controller to
increase your debugging power.

In the example below, the trace recording was halted when RO was changed to 5. This is impossible to
without a bondout chip or by replicating the CPU in the emulator hardware (which is not easy).

A trigger can have up to 50 addresses ANDed with 50 data values or ranges: and there are three triggers in
the Nohau EMUL166 ! Plus a Filter to specify what cycles are recorded in the trace memory.

Two Chip Emulation

The E2 bondout contains two CAN modules (hence can support the C164) and 3 XRAM modules of 2K, 4K
and 6K. Peripherals that are not on the E2 such as the C163 SSP are supported with a C163 on a
daughterboard in Emulation mode. This turns off the 163 CPU but the XBUS peripherals are still active and
available to the E2 through the external bus. New derivatives can be supported in this manner. Other periph-
erals such as the RTC, timers, CAPCOM and PWM are included in the E2 and are accessed normally.

Single Chip Mode

The E2 bondout supports internal ROM or FLASH devices from 32K to 512K. Remapping of this ROM to
segment 1 is fully supported. The ROM is simulated with fast RAM in the emulator. There are menu items in
the emulator software to inform the E2 it is in ROM mode, how much ROM it must simulate and if remapping
is needed.

The user program must set the ROMEN bit and perhaps the ROMSI bit in the SYSCON register during the
initialization period. This is easy to do. These values can be manually poked in with the emulator for small
experiments.

The data path for the ROM is 32 bits and this will be reflected accurately in the trace memory in the Opcode
column. All ports are available for the user: none are used for address and data buses. The appropriate
information is obtained from the IA and ID buses.

Chapter 6: Debugging with the Infineon E2 Bondout Microcontroller

Emulation Accuracy
The E2 directly supports the C167, C164 and C161. It can further support the C165 and C163 and other
derivatives except for the SAB 80C166 itself.

The E2 is not an exact copy of any of these controllers so some differences will occur. The CPU core is
exactly the same so this reduces differences substantially.

Conclusion

Experience has shown the E2 to accurately emulate C166 family members up to its design speed of 33 MHz.
A well designed In-Circuit Emulator can substantially reduce your debugging time and grief by using the power
of the E2 bondout from Siemens. Nohau is committed to providing the user with all E2 features as technically
feasible.

