
1 ••

EMUL296™-PC

User Guide

We would appreciate any feedback about the product (including the manual)
ranging from simple software defects to suggestions on how to

improve the examples.

Thank You.

Administrator
New Stamp

•• 3 Table of Contents

EMUL296™-PC

User Guide

Copyright © 1996 by ICE Technology

 ICE Technology
Tel: 650.375.0409 - 800.686.6428
Fax: 650.375.0409
BBS: 650.375.8666

URL: http://www.icetech.com
E-Mail: support@icetech.com

All rights reserved worldwide.
Edition 1

Development Team: Documentation:
Jim Hayes

Michael Bartol
Joey Zhuo

Jörgen Andersson

Jim Hayes
Wolfgang Wendler
Jörgen Andersson

•• 4 Table of Contents

Warranty Information

The EMUL296™-PC Emulator board, Trace board, Pods, Emulator Cable, and LanICE
hardware are sold with a one-year warranty starting from the date of purchase. Defective
components under warranty will either be repaired or replaced at ICE Technology discretion.

Pods that use a bond-out processor are also warranted for one year from the date of
purchase except for the processor. The bond-out processor will be replaced once if support
determines that the failure in the bond-out processor was not due to user's actions. This
replacement limit does not apply to the rest of the pod.

Each optional adapter, cable, and extender is sold with a 90-day warranty, except that it
may be subject to repair charges if damage was caused by the user's actions.

The EMUL296™-PC Emulation software is sold with no warranty, but upgrades will be
distributed to all customers up to one year from the date of purchase.

ICE Technology makes no other warranties, express or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. In
no event will ICE Technology be liable for consequential damages. Third-party software
sold by ICE Technology carries the manufacturer's warranty.

Warning: Always turn on the emulator before applying power to the target. Always turn off the target
power before turning off the emulator power.

•• 5 Table of Contents

Table of Contents

Table of Contents 5

Introducing EMUL296™-PC 9

Introduction to EMUL296™-PC .. 9
How to use this manual .. 9

If you are new to emulators of any kind .. 9
If you have used emulators with other microprocessors... 9
If you are familiar with emulators, MS Windows, and the chip,............................ 10

Manual Conventions .. 10
Quick Installation Instructions ... 10

System Requirements ... 10
Quick Setup Instructions .. 10

Installing the Emulator .. 10
Installing the Trace Board (If Used) ... 11
Installing the Pod... 11
Installing the Software ... 12
Initial Software Configuration.. 12
Confidence Test ... 13
Quick Start Instructions ... 13

Chapter 1: Software User Interface 17

Detailed Software Installation Instructions ... 17
Initial Software Configuration.. 17
Configuring the Software ... 18
Projects .. 18
Creating a Project .. 19
Setting the Paths 19
Mapping memory... 21
Emulator Hardware Configuration ... 21

Setting the Chip Config Registers... 22
Miscellaneous bits .. 24

Miscellaneous Configuration.. 25
Enable Code Space Limits.. 26
Window Colors .. 27
Reset vs. Full Reset .. 28
Trace Config Menu .. 29
Fast Break Write .. 29
Memory Coverage.. 30

Summary Memory Coverage Report ... 32
Detailed Memory Coverage Report ... 33

Performance Analysis .. 33
Menus.. 36

File Menu... 36
Programming External FLASH Memory .. 37
Programming Algorithms... 38
View/Edit Menu ... 40
Run Menu .. 41

•• 6 Table of Contents

Breakpoints Menu .. 42
Config Menu .. 44
Program Menu ... 45
Source Menu .. 46
Data Menu ... 46
ShadowRam Menu ... 47
Register Menu .. 47
Trace Menu.. 47
Stack Menu .. 47
Watch Menu... 48
Window Menu.. 48
Help Menu ... 50

Dialog Boxes.. 50
Child Windows .. 50
Register Windows .. 50
Data and Shadow RAM Windows .. 51
Custom Display Format.. 52
Program Windows.. 52
In-line Assembler ... 53
Source Windows... 53
Trace Window.. 54
Other Windows .. 54
Inspect Window.. 55
Watch Window... 55
Evaluate Window ... 55
Stack Window .. 55
RTXC Window .. 56

Tool Bar... 56
Help Line... 56
Dynamic Data Exchange.. 57

Chapter 2: Emulator Macro User Guide 59

Introduction ... 59
General description of the emulator macro setup .. 59
Visual Basic Supplemental User Guide... 59
General information ... 60
Procedure for writing a macro .. 60
Subroutine Reference.. 64
Windows API ... 64
Nohau Subroutines ... 64

Chapter 3: Emulator Board 69

EMUL/LC-ISA Emulator Board... 69
Detailed Installation Instructions.. 70

Setting the I/O address jumpers -- J1 .. 70
Setting the Target Communication Rate -- Header JP1 ... 70
Communication Rate Jumper.. 71
Trace Clock Rate.. 71
The PWR Header -- JP2.. 71
Power Supply to Pod / Target ... 71

Chapter 4: Trace Board 73

•• 7 Table of Contents

Trace Board Introduction ... 73
Trace Board Detailed Installation Instructions .. 73
External Inputs and Controls .. 73

Introduction to Tracing .. 75
Triggers and Hardware breakpoints .. 75

Trace Window ... 76
Pipeline Effects .. 76
Bus Cycle Order ... 76
Bus Width .. 76

Trace Menu.. 76
Find Frame number 76
Search Address .. 76
Search Next Address .. 77
Search Previous Address .. 77
Find Trig point... 77
Save trace as text 77
Show misc. data ... 78
Show timestamp... 78
Benchmarking Using Timestamp ... 78
Relative timestamp... 78
T = 0 at Cursor... 79
Convert cycles to time .. 79
Synchronize program window .. 79
Trace setup .. 79
Toggle trace (stop/run) ... 80

Trace Setup Dialog Box ... 80
Board Installed ... 80
Address .. 80
Trace Memory.. 80
Triggers ... 80
Filter Mode: Normal... 82
Extend Recording... 83
Filter Mode: Window ... 84
Editing the Trigger Conditions... 84
Break Emulation? Box.. 85

Chapter 5: Pod Boards 87

Features Common to All Pods .. 87
How It Works ... 87
Stack Pointer .. 87
Indicator Lights.. 87
How to Break Two Emulators Simultaneously .. 88
Trace Input Pins ... 88
Duplicate Resources ... 88
Configuration Requirements... 89
Internal Addressing or Single Chip Mode... 89

Chapter 6: POD-296-256-SA-50 91

Introduction ... 91
Dimensions .. 92
POD-296-256-SA Emulation Memory.. 93
Wait States ... 93

•• 8 Table of Contents

Breakpoints .. 94
POD-296-256-SA Headers.. 94

Chapter 7: Accessories 99

Overview ... 99
Surface-mount QFP adapters - SA Family .. 99
Surface-mount SQFP Adapters... 104
Compilers .. 108

BSO/Tasking.. 108
IAR Systems Software, Inc. .. 108

Chapter 8: Troubleshooting 109

Troubleshooting Overview ... 109
Step 1: Board I/O Addresses... 109
Step 2: .INI Editor .. 109
Step 3: PWR and XTAL jumpers.. 110
Step 4: I/O On Addresses Pins.. 110
Step 5: Chip Configuration Bytes (CCB's) .. 111
Step 6: The Stack Pointer ... 111
Step 7: Interrupt Vectors .. 111
Step 8: Sample User Program... 111

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 9

Introducing EMUL296™-PC

Introduction to EMUL296™-PC

The EMUL296™-PC is a personal computer based in-circuit emulator for Intel's 80C296
16-bit family of microcontrollers. EMUL296™-PC consists of an emulator "plug-in" board, a
five foot (1.5 m) cable, various pod boards and an optional trace board. The EMUL296™-
PC design supports all Intel microcontrollers that are based on the 80C296SA core.

The EMUL296™-PC software is a Microsoft Windows 3.x / `95 / NT application. It follows
the MS Windows Multiple Document Interface Standard, resulting in the same look and feel
as applications produced by Microsoft and others for MS Windows.

The EMUL296™-PC user interface is consistent with most other MS Windows applications
and includes dynamically changing menus, moveable and scrollable "child" windows,
function key shortcuts for menu items, and context sensitive help. Anyone familiar with MS
Windows applications will be able to use EMUL296™-PC with little or no other assistance.
It also supports the MS Windows Dynamic Data Exchange protocol and can export data
written to RAM to other MS Windows applications.

The EMUL296™-PC hardware is modular. The software user interface implements an
effective high level debugger. It has support for local variables, C typedefs, and C
structures. The Trace board options add bus cycle tracing, triggering and filtering functions.

How to use this manual

This manual was written with different kinds of users in mind. All users should have MS
Windows installed and have learned the skills taught in the Basic Skills chapter of the
Microsoft Windows User's Guide. It also assumes a basic familiarity with the chip you are
using. Many of the EMUL296™-PC features are designed around the features of the
supported chips. Being familiar with the chip is a prerequisite to understanding how to use
the emulator productively.

If you are new to emulators of any kind

read the manual completely, including the reference chapters. You may skip the sections
that describe pods items you do not have.

If you have used emulators with other microprocessors

and understand the difference between a hardware breakpoint and a software breakpoint,
but are not familiar with the chip being emulated, you are strongly encouraged to review
the features of the chip you have, then thoroughly read the section that describes the
applicable pod before running the emulator.

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 10

If you are familiar with emulators, MS Windows, and the chip,

read the Emulator Board and Software User Interface Chapters, skim the section that
describes the pod you are using, and then begin using EMUL296™-PC, referring to on-line
help, when needed. After a few days of use, skimming the Reference chapters may
highlight useful features.

Manual Conventions

Type the words in double quotes exactly as shown (without the quotations) except for the
<Enter>, <Ctrl>, <Tab>, and <Alt> keys. Use the <Alt> and <Ctrl> keys like shift keys. Hold
them down while you press the key that follows them in the text. For example, if the text
instructs you to type <Alt>F, press down and hold down the <Alt> key then press the F key.

Window names and labels that appear on the screen are printed in bold to set them apart
from the rest of the text.

Notes and hints are printed in italics, and warnings have a box around them to set them
apart from the rest of the manual text. Pay careful attention to them.

Quick Installation Instructions

System Requirements

EMUL296™-PC requires a personal computer with at least one free ISA (or EISA) bus slot.
The PC must also have at least 2 megabytes of RAM, a CPU that is either 80386, 80486,
or Pentium compatible, a hard disk with at least 3 megabytes of unused space and
Microsoft Windows 3.1 (or higher), Windows `95, Windows NT or OS/2 2.1 (or higher)
installed. A mouse is not required, but is strongly recommended.

Quick Setup Instructions

The hardware and software are designed to be easily installed and quickly running on most
personal computer systems. Users can normally begin using their emulator (without yet
connecting to the target) after following these initial steps. However, if you are new to
personal computers, if you are unsure about what to do after reading the quick installation
instructions, or if your emulator does not work after you follow these instructions, follow the
steps for installing and configuring each board and the software as outlined in their
respective chapters.

Installing the Emulator

Installing the emulator board is much like installing most other AT-style boards:

1. Turn off the power.

2. Remove the PC cover.

3. Remove the slot cover (if present) for an available 8 bit slot.

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 11

4. Insert the emulator board into the slot and use a screw to secure the emulator.

5. You can now close the cover, and attach the cable to the emulator and the pod.

Installing the Trace Board (If Used)

1. Turn off the power.

2. When you assemble the pod and the trace, make sure that you have the boards
aligned as shown below:

POD (top)

TRACE (top)

Connectors

Figure 1. Assembling Pod and Trace Boards

Note: Please be aware that you’ll have to apply a fair amount of even force on the two boards to
make them snap together. Make sure that all connectors and pins are aligned so they will
fit together properly.

1. Finally start the EMUL296™-PC program.

Note: It is not intended that you, as a customer, should disassemble the trace from
the pod board once they have been assembled. ICE Technology is not responsible
for personal injury caused by trying to separate the EMUL296-PC pod board
from the EMUL296-PC trace board.

Installing the Pod

With the PC power off, line up the cable connector with the slot on the emulator board, and
insert. There is no lock, but friction will secure the cable adequately. On the other end of
the cable, insert the cable connector firmly, and tighten the screws. Remove any antistatic
foam from pins. Before attaching the pod to your target, it is a good idea to power up the
PC, install the software, and follow the procedures described in the section titled
"Confidence Test" on page 13.

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 12

Installing the Software

To install this software, run SETUP.EXE by typing "WIN A:SETUP" at the DOS prompt or,
from within MS Windows, by selecting the RUN item in the Program Manager File menu
and typing "A:SETUP" as the file to run. A dialog box will ask for a directory for the
EMUL296™-PC software. You will be asked if you have a Win NT PC. Either accept the
suggested directory or type a different one. SETUP will uncompress and copy the files
from the floppy to the hard disk directory specified and change the paths in the ".ini" file.
When installed, there will be a EMUL296 program group containing the EMUL296 icon.
Double-clicking on this icon will start the EMUL296™-PC application.

The program group will also contain icons for several .wri files. These files contain
important information about what has been fixed in the latest revisions of the software and
problems that we know about that have not been fixed yet. Please take the time to read
these files.

Initial Software Configuration

The Windows software is used for all EMUL296-PC products. The type of target processor
in the software configuration must agree with the type of pod you are using. If not, you may
see an error message. To ensure that you do not get this error, we include a utility that
you should run when you first install the emulator, and possibly again when you
change your pod type. This utility is called INI296. (You can also run this utility any time you
want to check the values in the initialization file.)

To invoke INI296, double click on the icon in the EMUL296 program group labeled INI296.
If the EMUL296.INI settings are not self-consistent, you will see a warning message,
otherwise you will see the window shown in Figure 2.

To correctly configure your software to match your hardware, start by selecting the pod that
matches your pod type. If your pod cannot address memory above 64K, put a check mark
in the PC<64K box. If the pod you are using can address memory above 64K, either select
PC<64K (because you are not using the extra addressing) or leave the box unchecked and
make sure that the jumpers TRA16 through TRA19 match the field labeled Address from
A0 to ... For example: if TRA16 is in the EA16 position but the reset is in the GND position,
click on the button labeled A16. If all the TRA headers are in the EAxx position, click on the
button labeled A19.

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 13

Figure 2: Choosing a target processor with INI296

Make sure that the Trace Port: field is the same as the Emulator Port: field, click on the
OK button or press <Enter>. The Emulator Port: field must agree with the values you set
in the J2 jumper on the emulator board, as described in the section, "Setting the I/O
address jumpers – J1" on page 70.

After you have set up the initial processor type and I/O addresses, you can start the
emulator application. You are done with installation.

Confidence Test

Before starting the emulator software and before connecting the pod to your target, run the
confidence test installed along with the emulator program. An icon labeled "Confidence
Test" will be in the Nohau group. Double-click on it to start the Confidence Test.

The confidence test will read the Pod name and I/O address from the EMUL296.ini file. If
these values are incorrect, you must run ini296.exe. It will take less than a minute to
complete the tests. Many of the tests repeat with slight variations. If any tests report
unexpected errors, call or email support@icetech.com customer support for assistance.

Quick Start Instructions

This section describes how to quickly start using EMUL296™-PC to debug an existing
program or target board once the EMUL296™-PC hardware is installed and the user
interface software is running.

To load and execute a program:

1. Select Load code .. from the File menu and identify the "absolute" file to load by using
the dialog box

2. Click the Reset button.

Note: If you do not have code to load, do the following to enter your own small
user program:

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 14

click in the Program Window

type <Ctrl>-A

type in address 2080 (FF2080 if PC > 64K)

type <Ctrl>-N to force the program counter to address 2080

hit <Enter>

type: NOP <Enter>

 NOP <Enter>

LJMP 2080 <Enter>
then continue with item 3 below.

3. Click on the GO button in the tool bar
To set a software breakpoint:

1. Click twice on the desired instruction in any Program window, or

2. Click once on the address in any Program window, or

3. Click once on the line number for the desired instruction in any Source window.
To make a software breakpoint inactive either:

1. Click on the desired breakpoint in any Program or Source window, then press F2, or

2. Select Setup .. from the Breakpoints menu, click on the breakpoint, click on the
Toggle button, or

3. Highlight (click once on) the breakpoint and select Toggle Breakpoint from the
Program or Source menu, or

4. Highlight (click once on) the breakpoint and select Toggle from the Breakpoints menu.
To delete a breakpoint either:

1. Select Setup .. from the Breakpoints menu, click on the breakpoint, click on the Delete
button, or

2. Select Delete All from the Breakpoints menu.
To use the in-line assembler to change the program loaded:

1. Scroll a Program window until it shows the address to be changed or hit <Ctrl>A and
type in the desired address

2. Highlight the instruction to be changed with the cursor or arrow keys

3. Type the desired mnemonic (this will open an Enter new instruction: dialog box) and
hit <Enter>.

To change a RAM value:

1. Scroll a Data window until it shows the address to be changed

2. Highlight the address to be changed with the cursor or arrow keys

3. Type the desired value (this will open an Enter data dialog box) and hit <Enter>.

EMUL296-PC Introducing EMUL296™-PC

Copyright 1996 ICE Technology •• 15

Warning: Always turn on the PC before applying power to the target. Always turn off the target
power before turning off the PC power.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 17

Chapter 1: Software User Interface

Detailed Software Installation Instructions

Before installing the software, it is important to have a basic understanding of how to
operate MS Windows. For help mastering MS Windows, please refer to the Microsoft
Windows User's Guide.

The EMUL296™-PC floppy disk includes an MS Windows compatible SETUP.EXE
program. To install this software, run SETUP.EXE by typing "WIN A:SETUP" at the DOS
prompt before entering Windows or, from within MS Windows, by selecting the RUN item in
the Program Manager File menu and typing "A:SETUP" as the file to run. A dialog box will
ask for a directory for the EMUL296™-PC software. You will be asked if you have a Win
NT PC. Either accept the suggested directory or type a different one. SETUP will copy files
from the floppy to the hard disk directory specified and change the various MS Windows
".ini" files as needed. When installed, there will be a EMUL296 program group with several
icons such as an EMUL296 icon and an icon for the confidence test, CONF.EXE. Double-
clicking on the emulator icon will start the EMUL296™-PC application. If you wish to move
the icon to another group, you may do so by using the Move... menu item in the Program
Manager's File menu or by dragging the icon to the new group.

Initial Software Configuration

The Windows software is used for all EMUL296™-PC products. The type of target
processor in the software configuration must agree with the type of pod you are using. If
not, you may see an error message. To ensure that you do not get this error, we
include a utility that you probably want to run when you first install the emulator, and
possibly again when you change your pod type. This utility is called INI296. (You can also
run this utility any time you want to check the values in the initialization file.)

To invoke INI296, double click on the icon in the EMUL296 program group labeled INI296.
If the EMUL296.INI settings are not self-consistent, you will see a warning message,
otherwise you will see the window shown in Figure 3.

To correctly configure your software to match your hardware, start by selecting the pod that
matches your pod type. If your pod cannot address memory above 64K, put a check mark
in the PC < 64K box. If the pod you are using can address memory above 64K, either
select PC < 64K (because you are not using the extra addressing) or leave the box
unchecked and make sure that the jumpers TRA16 through TRA19 match the field labeled
Address from A0 to ... For example: if TRA16 is in the EA16 position but the reset are in
the GND position, click on the button labeled A16. If all the TRA headers are in the EA
position, click on the button labeled A19.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 18

Figure 3: Choosing a target processor with INI296

Make sure that the Emulator Port address and Trace Port address are the same. After
you have set the Emulator Port: and Trace Port: fields, click on the OK button or press
<Enter>. The Emulator Port: field must agree with the values you set in the J1 (address)
jumper on the low cost emulator board, as described in the section , "Setting the I/O
address jumpers – J1" in the Emulator chapter.

After you have set up the initial processor type and I/O addresses, you can start the
emulator application. You are done with installation.

Configuring the Software

If the Quick Installation instructions do not work, you will most likely need to adjust either
the hardware jumpers, the software configuration, or possibly both. Please refer to the
appropriate chapters for setting the jumpers on the Emulator board or the Pod board. The
next few pages describe all of the items in the Config menu. Use these menu items to
examine the software configuration in detail and to change it if needed.

Projects

A project is a collection of software configuration settings that are
all associated with a specific person, target, or software
development project. This menu item opens a dialog box that
allows you to set up named configurations or projects. This is first
in the menu and described first because all of the other Config
menu item settings will be stored as settings for the current
project in a file with a ".PRO" suffix. There is an ".INI" file and
those settings are used if there is no current project. But if the
".INI" file contains the name of the current project, all software
settings are taken from ".PRO" file for that project.

Projects behave differently than, for instance, a word processing document. All software
configuration settings are written to disk every time you change projects or whenever you
exit the emulator software. There is no "exit without saving changes" option. Once you

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 19

make a change to the configuration, it is immediately effective and will, unless you
manually undo the change, be saved to the disk in the project file.

Creating a Project

Users who change the software settings and THEN change the name of the project may
believe the old project will remain unchanged. In fact, the moment a new project is created,
the current settings will be saved to the old project, not the new project. The new project
will be saved when exiting the debugger or when changing projects (again).

Figure 4: Set Project Name Dialog Box

To add a project, type the new name over the current name. Because the project name is
used as the body of a DOS file name, do not use characters in the name that cannot be
used in a file name (like a space character). The new project will inherit all the settings from
the old project. Projects are deleted by highlighting the project name you want deleted and
then clicking on the Delete item button.

Figure 5. EMUL296™-PC Title Bar

The name of the current project appears in the emulator software title bar. Figure 5 is an
example of the EMUL296 title bar for the project named SCREENS (used to create the
screen shots for this manual).

Setting the Paths ..

The next item in the Config menu is Paths .. which opens the dialog box shown in Figure 6
of the manual. The emulator uses these directories to find the files it needs.

Each of these fields can hold up to 1024 characters. Each directory in the path must be
separated by a semi-colon (;) just like MS DOS path names. By default, The User load

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 20

modules: field will contain the directory from the last loaded object file, and the Emulator
internal files: field will contain the directory where the emulator files were installed.

The Load path: directory is the default directory searched for Intel Hex files and absolute
object files. Any directory can be specified when loading a module, but the directory shown
here is the default. The .ext field specifies the default file extension. Files in a directory with
this extension will be shown in the Source Window.

Figure 6: Paths Dialog Box

With many compilers, the full path name of the source file is contained within the object
file. Linked object files consisting of several linked objects will, correspondingly, have
several source file names and paths. If that source file name exists in the object file that
EMUL296™-PC is loading, the debugger will look for that source file when updating the
Source window.

The second field, Source paths: identifies other directories to search for missing source
files not identified in the object file or files moved since the compile. The directories in this
field must be entered by the user. Once entered, directories will stay here until removed by
the user. The small check box, when checked, will tell EMUL296™-PC to look for source
files in the Load path: directory as well. Simple projects may have all the source and object
files in the same directory (the Load path:) and may not need any directories in the Source
paths: field.

Note: The ".ext" field specifies the source file extension. If your C modules have
the extension ".c", enter that. To see assembler source (.asm) in the Source
window, enter ".asm" .

The Emulator internal files: field will be set during the installation and probably will not need
to be changed. Emulator internal files: is the directory the application uses to find the
various support files that are part of the EMUL296™-PC software such as register
definition files and dynamically loaded libraries. Normally, the installation program will set
this to the proper directory. If you copy or move EMUL296™-PC to a new directory or disk
drive, remember to change this field also.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 21

Mapping memory

ROM and RAM on the target can be emulated by RAM on the pod board. This RAM is
called emulation RAM. The entire address range for both ROM and RAM can be mapped
to either the target or the emulator in blocks as small as the chip selects specifies. This is
controlled by jumpers and the chip selects on the CPU.

When an address is mapped to emulation RAM on the pod, all READ, WRITE, and
instruction fetch cycles to that address are directed to emulation RAM. Target RAM, target
ROM, and memory mapped devices on the target at that address are ignored. If your target
has a memory mapped I/O device within a block mapped to emulation RAM, this mapping
will prevent your application from accessing that device. To avoid this, map the blocks that
contain target devices to the target.

Note: On reset, the emulator software will write to the CS0 registers so that CS0 will cover the
entire 16 Mb memory range. This will map all memory to the pod when a jumper shunt is
on JP24 (CS0) and ensure that the code can be loaded to the pod.

Emulator Hardware Configuration

Warning: The settings in this dialog box must agree with
the emulator jumper settings, the pod processor
type, and the application startup code. If this is
not the case, EMUL296™-PC will not work
properly.

The Emulator Hardware .. menu item configures the
software to correctly communicate with the hardware.

The Emulator Port value must agree with
the jumper settings on the low cost emulator
board header J1. (See "Setting the I/O
address jumpers – J1" in the Emulator
chapter). If they do not agree, the
EMUL296™-PC software will not be able to
communicate with the hardware, and the
dialog box in Figure 7 will automatically be
displayed, as a reminder that communication
has failed and some change is needed.

Figure 7. Failed Communication Dialog Box

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 22

Figure 8. Hardware Configuration Dialog Box

Setting the Chip Config Registers

Most of the Hardware Configuration dialog box controls how EMUL296™-PC manipulates
the Chip Select registers. allowing the controller to read them after each reset. Normally,
EMUL296™-PC must update the Chip Config registers before each reset. If it did not, the
emulator might not be able to write to emulation RAM. It might be unable to load code, or
toggle breakpoints, etc.

Figure 9. Processor List Box

The processor list box lets you choose the kind of processor being emulated. This setting
must agree with the kind of processor you are using in the target or the emulator will not
work correctly. If you must change the processor type, select the correct processor from
the list, ignore any errors, ignore any warnings that appear at this point, exit the emulator
Hardware Configuration dialog box, and select Full Reset from the Config menu. Choose
the Full Reset menu item before you do anything else, or push Reset in the dialog box and
then click OK.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 23

Figure 10. Wait States field

The box labeled Wait States: will let you select the number of wait states (for CS0) the
chip will use when accessing external memory. Emulation RAM is fast enough to respond
with 0 wait states. Target RAM may or may not be fast enough, depending upon the speed
of the chips on your target. Selecting the infinite button requires that the target hardware
correctly assert the READY signal when the data on the bus is valid.

Figure 11. Setting the Bus Width

In the Bus width: box, selecting either 8 bit or 16 bit bus width forces the controller to use
only the specified bus width for CSO.

Figure 12. Bus Control Settings

The P5.5 pin carries the BHE/WRH signal. Selecting one of these two radio buttons
controls which signal the controller sends on that pin. BHE stands for Bus High Enable and
will indicate that there is valid data on the high byte of the bus (D8 through D15) in 16 bit
mode for either WRITE or READ bus cycles. WRH stands for WRite High and is used as a
Write Strobe to the devices connected to the high byte of the data bus during WRITE
cycles.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 24

Miscellaneous bits

As of this writing, the Miscellaneous bits feature is not functional.

The Read CCB2 and Read CCB3 check boxes, if checked, will force the controller to read
CCB2 and CCB3. If they are not checked, they will prevent the controller from reading their
respective control bytes. If you have selected a controller from the Processor List box that
uses only 2 CCB locations, (CCB0 and CCB1) these check boxes will be gray.

Figure 13. Miscellaneous CCB bits

The 8xC296 controllers have more than 16 address bits. With a check mark, this field
prevents the controller from addressing anything above 64k. The Use address bits A0
through .. field (in the upper right corner of the dialog box) will be inactive. Address lines
A16 through A19 (port E bits) may then be used for I/O. When you remove the check mark,
the address bits above 15 become configurable as address bits and the address line
configuration field becomes active.

The PDEN check box, when checked, allows the controller to go into Power Down Mode if
the IDLPD #2 instruction is executed.

Once all the check boxes and radio buttons are set the way you want them, click on the OK
button. This will:

1. Update the CCB RAM locations.

2. RESET the controller.

3. Exit from the dialog box.

Figure 14. Exiting the Hardware Config dialog box

To exit the dialog box without writing any of the changes just made, click on Cancel button.
To write the changes and reset the controller without exiting the dialog box, click on the
Reset button.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 25

Note: When the EMUL296™-PC software is started, the controller will be released
from a reset state and it will read the CCB values from locations in the POD
EPROM and execute code that writes the .ini file CCB values to the CCB
RAM locations. Then the controller is reset again and this time it will read the
CCB values from RAM.

Miscellaneous Configuration

The Miscellaneous item in the Config menu opens a dialog box that
controls special features of EMUL296™-PC:

(1) when and if automatic resets occur.

(2) optional reset vector values.

(3) the source code address range for limiting where breakpoints
are set.

(4) the memory scroll range used for Data and Program window scroll bars.

(5) writing values to memory while the application is running.

By default, the emulator resets the controller when the EMUL296™-PC software is started
and after an object file is loaded. The Reset chip at start up: and the Reset chip after
load file: radio buttons can disable either of those resets which may be helpful during
particularly difficult or unusual debugging circumstances.

Figure 15. Miscellaneous Setup Dialog Box

For example, if you have a code file you want to load but you are unsure if the CCB values
in that code file are correct, you may not want the emulator to reset the controller right after
loading the file. Instead, you may want to load the file manually and then check the CCB
values before they are used.

Saved watchpoints are not implemented yet. For information about the status of this
feature, call or email customer support a support@icetech.com.

Figure 16. One Feature Not Yet Implemented

The next field in the Miscellaneous menu dialog box, the DDE sampling interval, controls
how often Shadow RAM is updated on the screen and how often a DDE link is updated.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 26

There is a lower limit to how often the screen and the DDE link can be updated. This limit
depends upon the speed of your machine, how much RAM your machine has, and how
many applications are running. Due to delays from inter-application messaging in MS
Windows and possible problems caused by a message backlog, the lowest setting allowed
is 100 milliseconds. The upper limit is 32767 milliseconds.

Note: DDE is not supported as of this printing. Please check your current version
of software.

Figure 17. Controlling the DDE Sample Interval

Occasionally, while the emulation is running, writing a value to a RAM location can help
debugging. For example, it might be useful to simulate a memory mapped input device this
way. The EMUL296™-PC DDE interface supports "poking" a value into an address. The
DDE link can be a two-way connection and some applications may send a value to a
particular address in emulation or target RAM. However, updating RAM at pseudo-random
times can be dangerous for the program and possibly the hardware you are controlling
while you are emulating. With the next field, the DDE poke flag address, you specify an
address of a two byte flag that, when polled and found to be set to hexadecimal 1234,
indicates that it is safe to write the DDE value to RAM.

The check box to the left turns poking on or off: a check turns it on. When EMUL296™-PC
has a value to "poke" into RAM (every DDE sampling interval), it first polls this box. If it is
checked, the emulator application will read the contents of the poke flag address. If the
contents are set to 1234H, then EMUL296™-PC will suspend the emulation for
approximately 200-250 microseconds while it updates RAM. Finally, EMUL296™-PC will
clear the poke flag (set to 0) and restart the application. The software must reset the flag to
1234 when it is again safe to update the poke addresses.

Note: Displaying Shadow RAM and sending a value to another application does
not slow the emulation.

Enable Code Space Limits

In some symbols files, symbols are not identified as Program space variables or as Data
space variables. If this is true of your file, you may see the EMUL296™-PC software try to
set breakpoints in your variable address range. To prevent this, check the Enable code
space limits box and set the Low and High addresses to encompass just the instructions.
Configured this way, EMUL296™-PC will not put breakpoints outside that address range.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 27

Figure 18. Forcing Reset Vectors

When the Override at Reset boxes are checked and the fields contain addresses (in
hexadecimal notation), those values will be written to the controller's program counter and
stack pointer every time EMUL296™-PC resets the controller. If you have some test code
at an address other than 2080H that you want to execute, filling in this field will force the
program counter to the specified value each time you reset the controller. Similarly, to run
the test code right after a reset, the stack pointer register must have a legitimate value.
This field will conveniently force the stack pointer to a specified value after reset without
having to run your start-up code.

Warning: Using the Stack Pointer field will set the stack pointer for you which will not happen
on a stand-alone target. If you use this field, your start-up code must also set the
stack pointer every time the controller is reset or your application will behave
differently.

In the lower left corner of the Miscellaneous Setup dialog box is a group of radio buttons
that control the Memory scroll range. These buttons specify the highest address displayed
in Program and Data windows when the elevator in the scroll bar is dragged to the bottom
of the scroll bar. If the scroll range is set to 256K, the bottom of the scroll bar represents
the address 40000 Hex. Similarly, halfway down the scroll bar represents 20000 Hex. If the
scroll range is set to 1 Meg. the bottom represents 100000 Hex, and so on. .

Window Colors

Under the Config menu is the Color .. menu item. Open this
dialog box to set the colors of different kinds of EMUL296™-PC
child windows. For example, all Program windows can be set to
have a dark blue background with white text to differentiate
them from other kinds of windows. At the same time, all Data
windows can be green with Black text, and all Source windows
set to have white background and red text. It is possible to make
the screen quite attractive.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 28

Figure 19. The Color Setup Dialog Box

For each window class that you wish to change, select the window class from the Select
window class drop list. While that class name is showing in that field, the colors you select
will be assigned to that class of windows.

After you have set all the colors the way you want them, you can name a color scheme by
typing the name in the Color scheme field and then click on the Save button. This color
scheme can then be recalled by selecting it from the drop list of color schemes.

Note: Not all combinations of background and foreground colors are possible.
EMUL296™-PC is constrained by the same limits as MS Windows itself, and
is affected by the color palette chosen in the Windows Control Panel
program. No matter what colors you select from this palette, the example
text pane will show you the colors that will actually be used by EMUL296™-
PC.

Reset vs. Full Reset

Under most circumstances that you will encounter, a Full Reset
is the same as clicking on the Reset button in the speed bar,
selecting Reset Chip from the Run menu, or pressing
<Ctrl>F2. With both kinds of reset, the controller is reset by
pulling the reset line low. The controller reads the CCB
registers and the controller is immediately halted. When the
emulator software is first started, or possibly after an accident
on the pod or target, the states of the two large logic chips on
the pod are not known. In a Full Reset, before the controller is

reset, the large logic chips on the pod are reloaded with their configuration information (you
can find the Full Reset menu item is under the Config menu). Under all circumstances you

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 29

MAY use the Full Reset menu item in place of clicking on the Reset button. Unless you are
changing the pod type, there will be no NEED to use the Full Reset menu item.

Trace Config Menu

For information about the Trace .. menu item, please refer to the manual in Chapter 4:
Trace Board.

Fast Break Write

If the emulator is connected to a motor controller, breaking
execution may be hazardous to the motor, or other parts of
the target. At the same time, you may want, or even need, to
update a memory location to run a certain test. The feature
designed for these circumstances is the Fast Break Write.

A Fast Break Write breaks execution, updates one address
with one 8 or 16 bit value, then resumes execution, all within
15 microseconds or less (at 16 MHz).

Figure 20. Fast Break Write Dialog Box

The address and data fields are both in hexadecimal notation. Execution will be paused
and the address will be updated when (every time) you click on the Write button.

Hint: To read data values without delaying the application, use a Trace board and
make sure that your software regularly reads or writes to the address you
wish to monitor. You can then set up a trace filter to only record the bus
cycles to and/or from the desired address(es). Stopping and viewing the
trace buffer does not affect the running application.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 30

Memory Coverage

The EMUL296™-PC trace option includes the hardware necessary to
monitor memory and correlate its use with your C source code. If
instructions are fetched, the trace board will mark those addresses.

Choosing Memory Coverage from the Config menu will open a
Coverage window and put the trace board into a "Coverage Mode"
that prevents normal tracing. As long as this coverage window is open,

the Trace window contents will not change. If initially closed, the Trace window will open
empty and stay empty until you close the Memory Coverage window.

If you load your application software before you open the coverage window, the Memory
Coverage window will display rows, where each row has a starting address on the left and
small black squares to the right of the starting address. The starting and ending addresses
are taken from the object file you have last loaded. You may set any address range by
selecting the Edit item in the Coverage menu.

Figure 21. Editing the Coverage Address Range

You may either edit the existing range or you may add one or more address ranges. To
edit the existing range, double click on the line containing the address range. To add an
address range, double click on the empty line just below the existing address range.

EMUL296™-PC supports any number of address ranges. The ranges do not need to be
next to each other. They may be located anywhere in the address space. The only practical
limit is that the sum of all ranges must be less than 256 kilobytes.

Once you have edited the address ranges (changed them from the default range set up
when loading the file) you will want to save these settings for future use. The Save menu
item in the Coverage menu will write the current address range(s) to the .INI file. The Load
menu item will read them from the .INI file.

Each square represents a memory word: two bytes starting on an even byte. Squares are
grouped into segments 8 squares across. For each address there are 4 rows of segments.
“Figure 22. Typical Memory Coverage Window" shows a Memory Coverage window with
7 segments in each row. In this case, each row of dots represents 70 hex bytes of memory.
Each row of blocks represents 1C0 hex bytes. As the window gets wider, each row
contains more blocks of squares and the addresses will get farther apart.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 31

Figure 22. Typical Memory Coverage Window

A square (or memory word) that has been covered will be blue. If either byte of the word
has been fetched, the square will change color. Untouched squares will be black. This
gives you a visual estimate of how much of your code has been executed since the
Coverage window was last reset. For an exact representation, look at the Program and
Source windows.

As shown in Figure 23, there are new symbols in the Source and Program windows. In the
Program window, you will find either a : or an x between the address and the rest of
hexadecimal value at that address. The : means that the opcode has not been executed.
The x indicates that it was either executed or prefetched.

Figure 23. Program and Source Windows in Coverage Mode

In the Source window, there are 4 new indicators between the line number and the line
text: + - & % , explained below:

+ All opcodes from this line were fetched.

% Some opcodes from this line were fetched.

- No opcodes from this line were executed.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 32

& This line generated no executable code.

Please note two important things in Figure 23. The strcpy() call is not completely covered,
so in the Source window, it is marked with a percent sign. The other important thing to
notice is that address 23E6 has a breakpoint. The instruction at address 23E9 has been
marked as fetched (because it has been fetched) but it has NOT been executed.
Instructions right after executed jumps will be shown as fetched. They may or may not
have been executed.

Summary Memory Coverage Report

A screen full of coverage information may be helpful, but it won't satisfy the FDA. or the
FAA. They both want written evidence they can hold in their hands that show that your
tests actually tested your code. EMUL296™-PC can help there.

When you select Report from the Coverage menu, you will see a dialog box similar to
Figure 24.

Figure 24. Summary Coverage Report

For every module loaded, you see a range of addresses that have been touched or fetched
since that last time the coverage memory was reset. You may see the summary applied to
source lines (as in the example) or to absolute addresses and opcodes (the default). You
may also invert the sense of the summary report. Check the Uncovered box and the report
will display only the uncovered addresses or lines.

To obtain a paper copy of the report, click on the Print button. This will send the summary
to the current default printer. A different kind of report, a more detailed report, is available
by clicking on the .COV Files button. Figure 25 is the dialog box that configures these
reports.

The summary report is good for small test runs that can be completed without turning off
your P.C.; without exiting the EMUL296™-PC software. However, your tests may be very
large; so large that running all of them without exiting the emulator software may not be
possible.The detailed coverage reports let you combine multiple test runs in a single
document (for each source file).

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 33

Detailed Memory Coverage Report

Figure 25. Producing Detailed Coverage Reports

The detailed coverage report produces a text file that looks like the Source window while in
coverage mode. It reads in the source file (or a previous coverage file), and puts the line
number and one of the four status characters at the beginning of each line. The output text
file is written to the same directory as the source file and, by default, has .COV as a suffix
to distinguish it from the .C file. You can change the output file suffix by changing the
Result files ext. field.

If the source file scanned is actually the output from a previous coverage report, it will
combine the two reports so that lines covered by either report will be marked as covered in
the new report. This is the feature that allows you to run your tests over several days and
still generate a single set of files that accurately reflects how well all of the tests together
have covered the generated instructions.

Typically you will want the emulator to create a detailed coverage report for all source files
so leave the File name: field empty and the For all files field checked. You can, of course,
generate coverage reports for a single module, in which case you would double click on
that module name in the list box. Checking the Overwrite box will ignore the coverage data
in the input file, if there is any. Then the report files will only reflect the current coverage
data. The Base files ext field selects the extension of the input text files. If there is no file
with the specified extension, the source file for the current module (from the object file) will
be used as the input file to generate the report.

Performance Analysis

What portion of your application uses most of the CPU cycles? This
is the question that Performance Analysis is designed to answer.
You set up address ranges or bins, run your program, and then
look at the results to see where (or which bin) the statistics say your
program spent the most time.

Performance Analysis is a statistical analysis of execution behavior.
Once every second, a percentage of the bus cycles are collected,

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 34

sorted into their respective bins, and the results are displayed on the screen. As you might
guess, the percentage of the cycles that are collected depends upon the speed of your
P.C., what other tasks are running, etc.

To get more accurate results, run your program for longer periods of time. If you watch the
statistics on the screen, you will see them change quickly at first, then more slowly. When
they change very slowly, you know that the statistics will probably not get any more
accurate.

Figure 26. Performance Analysis Control Window

When you select PPA Analyzer from the Config menu, you will see a control window that
looks like Figure 26. The application and the data collection will automatically be started
every time you open the PPA control window. The six buttons at the top of the window
control the application and the data collection separately.

Note: Clicking on the SAVE button saves the setup, not the results.

Each bin is really an address range. If the address range corresponds exactly to the
address range of a function, that function name will be displayed next to the address.

A fetch from an address that doesn't fall within any address range will be counted in the
Miss bin. A fetch from within an existing but inactive address range bin will not be counted
at all. It will not count in the inactive range and it will not be counted within the Miss bin.
Statistics will not be kept for that inactive bin at all. The Miss bin cannot be made inactive.

The very first time you configure Performance Analysis you will find only one bin: the Miss
bin. This bin cannot be deleted, or edited, or be made inactive.

Figure 27. Performance Analysis Control Options

Figure 27 shows the rest of the statistics from Figure 26, plus a few options. This data set
took 11 minutes and 31 seconds to collect. A total of 280,118 frames were recorded.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 35

Figure 27 shows that data read and write cycles were ignored; the Code only option is
checked. Only instruction fetches are counted in the statistics.

Figure 27 also shows that the Bargraph option is turned off. If you prefer a graphic display,
you may turn on the Bargraph option and see the data displayed in a form similar to that
shown in Figure 28.

Figure 28. Bargraph Display Option

To add bins of your own, click on the Add button to open the list of functions shown in
Figure 29. You can add any of the functions as an address range, or you may create an
address range not on the list.

Figure 29. Adding a Bin

To add a bin corresponding to the main() function, double click on main in the function list,
then click on the Add button. Note that clicking once on main will highlight it but not update
the Start and End fields with the values for main(). Also note that double clicking does not
actually add the bin. You must click on the Add button to actually add the bin. With the
Address Range dialog box open, you may add as many bins as you like before clicking on
the Done button to close it.

The Length field controls how the End field is used. With a check, the End field displays
the length. Without a check in the Length field, the End field displays the end address in
hexadecimal notation.

Using a very similar screen, any bin can be edited by double clicking on that line in the
PPA Control window (Figure 26). This is how you activate and deactivate bins.

Once you have collected the data you want, EMUL296™-PC allows you to either save or
discard the changes you just made to the list of bins. Only one bin configuration can be

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 36

saved, not one per project like most configuration settings. This bin configuration will be
automatically restored the next time you use performance analysis.

Menus

The primary means of controlling the debugger, thus the emulation, is through menus. The
EMUL296™-PC menus conform completely with the Microsoft MDI standard. Only those
menu items that have meaning or can be used with the current selection will highlight when
the mouse is pointing to them. Menus are organized to hide items that are out of context.

Most menu items have "Hot Key" equivalents. That is, there is some combination of
function keys, character keys, and modifier keys (Control, Shift, or Alt keys) to select most
menu items. The Hot Key for each menu item is shown in that menu to the right of the item
name, and are also shown below. Where you see "<Alt>FS" as the keyboard shortcut, you
should type <Alt>F (hold the Alt key down while you then press the F key) to open the File
menu, then press the S key (without the Alt key) to activate the portion of EMUL296™-PC
that writes "S" record files. Holding down the Shift key or turning on CapsLock is not
necessary. Even though the keyboard shortcuts are all shown in capital letters, the
shortcuts are not case sensitive.

File Menu

Menu Item Hot Key Function

Load code F3 Load an absolute file. EMUL296™-PC
supports many popular compiler object file
formats. See the Accessories chapter for
more information.

Load default symbols .. <Alt> FL Load symbols defined by the MCU
manufacturer. Selecting this menu item will
load the default symbols defined by the
MCU manufacturer in their manuals. This
will enhance the display in Program window
by converting the addresses of registers into
their respective names and bit descriptions.
(Note: Loading default symbols may take
as long as 40 seconds on some machines.)

Load EEPROM .. (See
Note Below)

With some assistance, EMUL296™-PC can
load user programs into FLASH memory
devices, whether the memory is a module in
the MCU or is a chip external to the MCU.
Selecting this menu item will open the
Program (E)EPROM dialog box shown in
Figure 30.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 37

Note: As of this printing, Flash programming is not implemented. Please test it in
your software version.

Figure 30. Programming On-chip Flash Memory.

From this dialog box, clicking on the OK button will start executing the checked
Programming Options from top to bottom.

In the example in Figure 30, the file MYPROG.HEX is the file you want loaded into the
FLASH memory. At this time, this must be an Intel hex record file. MYPROG.HEX must be
linked to the same address range where the EEPROM is mapped.

The Algorithm file is used for programming external memory devices. It will be explained
later.

The Programming Options are just what they seem to be. Blank Check makes sure that
the EEPROM is blank. Erase makes the EEPROM blank. Program does the actual
programming. Verify compares the file in the File Name field to the contents of the
EEPROM. If they are not the same, a dialog box will tell you so.

Programming External FLASH Memory

If you have designed your target with an external FLASH chip, and you want EMUL296™-
PC to program it, you must provide the algorithms for blank checking, erasing,
programming, and verifying the contents of your specific EEPROM. The algorithms must be
written in instructions executable on the MCU in your target.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 38

Figure 31. Programming an External Flash EEPROM

When you click on the External button the controls for the on-chip FLASH are grayed. The
three active fields become Base Address, Length, and RAM. The first two, Base Address
and Length refer to your EEPROM. Set them to match the base address and size of the
FLASH you want to program. The RAM field must point to active RAM large enough to hold
the algorithms and temporary data. This is where the algorithms will be loaded and
executed.

Hint: Many MCU's have internal SRAM modules large enough to hold algorithms
and temporary data. Use the Other Presets feature to activate and map the
SRAM to the address shown here in the RAM field.

Programming Algorithms

In order to perform the 4 tasks Blank Check, Erase, Program and Verify, you must provide
code that can run on your MCU to perform those tasks. The code is processor specific.
Please refer to the template file F_SKEL.ASM for skeleton examples of each function and
specific register names.

To invoke any of these programming algorithm functions, the EMUL296™-PC debugger
puts the start of RAM from the RAM field into a register puts the entry point (the RAM base
address plus four for BlankCheck) into the program counter, and tells the MCU to start
executing. This means that the programming algorithm file must start at the very beginning
of RAM and the jump instructions from the template file must be first in the algorithm file.

Every function must end with a TRAP instruction to give MCU control back to the debugger.
When the routine is complete, the debugger checks the CPU registers for error information
and displays the status to the user.

In addition to the four obvious functions, your algorithm file must include four other
functions: Calibrate, Initialize, EnableProg, and DisableProg. Examples of all these
functions are also in the file F_SKEL.ASM for the 296SA.

Calibrate turns off the watchdog timer, adjusts the clock speed, and then counts how many
times it executes a small loop in two seconds. This count is divided by 20 and used as a

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 39

100 millisecond standard. Your algorithms can use this constant to produce desired delays
independent of the target clock rate or your PC speed.

The Initialize function should contain any target or EEPROM specific setup code. It is called
once after the calibrate routine.

If you have checked the Program box, the EnableProg function is called once, before the
Program function is called. Typically, this function will turn on any necessary programming
voltages. Typically, the function DisableProg turns off the programming voltages.

The Program function is called as many times as necessary to completely fill the EEPROM.
Before it calls Program each time, the debugger fills the buffer in RAM with some of the
data to be programmed and puts the start address in a register. The Program function must
copy the data from the RAM buffer to the EEPROM while manipulating whatever bits are
necessary.

Verify is similar to Program in that it is called many times in succession with different
portions of the EEPROM in the RAM buffer during each call. If the verify function finds a
difference, it puts a 1 into the status register, which will get reported to the user.

Menu Item Hot Key Function

Save code as .. <Alt>FS Write the contents of RAM or ROM to a HEX record
file. Any region of memory can be saved to a file
for reloading later. Selecting this menu item opens
a dialog box that lets you select an address range.
Please note that only the HEX file format is
supported at this time.

Remove Symbols Delete all line number and symbolic information,
and close source files.

Show load info .. Display a window describing the object file last
loaded including number of variables, address
range loaded, etc.

Preferences <Alt>FP Controls the way the emulator loads object files.

Exit <Alt>X Quit the EMUL296™-PC application. Exiting the
EMUL296™-PC software will update the current
debugger configuration to either the .ini file or to the
current .pro file, if one is selected.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 40

View/Edit Menu

Menu Item Hot Key Function

Copy to clipboard <Ctrl><Ins> Copy the text (without formatting or font
information) of the entire active window to the
clipboard.

User defined symbols This item opens a dialog box that lets you select
the module from which you can view symbols.

Default CPU symbols View and edit memory-mapped registers by name
and by the bit.

DDE Status Open a window displaying the DDE interface
status.

Note: DDE is not supported as of this printing. Please check your current version
of software.

The DDE Status menu item opens a window that displays information about the DDE
interface intended for development and debugging.

Please contact a technical support engineer for assistance using the DDE Status
window. support@icetech.com

Menu Item Hot Key Function

C call stack .. <Alt>VC Opens a child window that displays the C call stack
and passed parameters needed to reach the
current Program Counter.

Evaluate .. <Ctrl>E Open a dialog box that evaluates C expressions.
Expressions may contain variables. Assignment
expressions may change the values of variables.

Hint: To change the value of a variable, use the Evaluate window to evaluate a C
assignment expression such as "i=75".

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 41

Menu Item Hot Key Function

Inspect .. <Ctrl>I Open a dialog box that displays the contents of a
single variable, structure, or array in detail.

Add a watch point .. <Ctrl>W Open a child window that displays groups of
variables that is updated every time emulation halts.

Search.. <Ctrl>S This menu item opens a dialog box that lets you
search the active window for the kind of data
displayed in that window. If the Source window is
active, you can search for text strings within that file.
If the Trace window is active, you can search for any
trace record. (See the Trace chapter for more
details.) In all other windows that support searching,
the search is for a hex pattern.

Search next <Ctrl>X The last search defined will be performed again,
from the cursor forward.

Search previous <Ctrl>P The last search defined will be performed again from
the cursor backwards.

Run Menu

Menu Item Hot Key Function

Step into F7 Execute one instruction, including a jump instruction.
If a Source window is selected, execute all the
instructions for one line of source.

Step over F8 Execute one instruction or all the instructions in a
subroutine. If a Source window is selected, execute
all the instructions for one line of source. Due to
some kinds of optimizations, this feature may not
always be available.

Animate .. <Ctrl>F7 Execute instructions continuously and slowly,
highlighting each instruction or each line as it is
executed.

Go F9 Begin executing instructions from the current PC at
full speed until the next breakpoint.

Go to cursor F4 Execute the instructions from the PC to the current
cursor position.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 42

Go to .. <Ctrl>F9 Execute the instructions from the PC to the specified
address.

Go to return address <Alt>F9 Execute the instructions from the PC to the next
found function return. Due to certain optimizations,
this feature may not always be available.

Go FOREVER Execute instructions from the current PC after
disabling all breakpoints.

Break Emulation F9 Suspend execution as if a breakpoint was
encountered.

Reset Chip <Ctrl>F2 Reset CPU without executing any instructions.

Reset and Go Reset CPU and begin execution from reset vector.

Breakpoints Menu

Menu Item Hot Key Function

Toggle F2 Disable or enable existing breakpoints.

Hardware
breakpoints ..

Opens a dialog box that lets you set up address
ranges for hardware breakpoints (that don't use the
trace board).

Break on internal
access ..

Opens a dialog box that lets you set up address
and data masks that will cause a break on internal
bus cycles of the right type.

Hardware breaks
only

If this menu item is checked, all program/source
window breakpoints will result in hardware
breakpoints..

Fast_Breaks .. Setup and execute a "fast break write" to memory.

Note: “Break on internal access” is not supported as of this printing. Please check
your current version of software.

Under the Breakpoints menu, select Break on internal access.. This uses the Intel
special emulation chip breakpoint register to break execution when reading or writing bytes
or words to register RAM and internal RAM. These read and write cycles cannot otherwise
be seen externally with the trace card or in shadow memory. The data as well as address
may be qualified and ranges are possible using Don't Cares in the mask bits.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 43

Notice that there are 11 address bits and 16 data bits, each with a check box. The address
range of Register and internal RAM varies depending on Sx chip member.

To select accesses 100 to 1FF you might enter 100 hex and then uncheck the lower 8 bits:

(üüü ____ ____)

An unchecked bit is “don’t care” and a checked bit is significant for either address or data
qualifiers. The address and data mask is then ANDed with the entered hex address or
data value. A data range of 10 to 1F could be entered as 10 with all boxes except the
rightmost 4 bits checked:

(üüüü üüüü üüüü ____)

The 4 vertical boxes are checked as follows:

ARD (Address Range Detect) normally checked

WR (Write cycle) checked if a write to specified address

RD (Read cycle) checked if a read from specified address

DRD (Data Range Detect) normally checked

Leaving all four boxes empty disables any internal breakpoints.

EXAMPLE 1:

Use the supplied time.omf program and observe that the counter "ticks" is located in
register RAM at location 36 hex (not fixed location). It increments from 0 to 19 decimal in
the pitr_int periodic interrupt function before being reset and the seconds incremented.
Check boxes ARD, WR, and DRD, then enter "ticks" for the address and 5 for data. All
mask boxes should be checked. Exit this pull-down and start the processor with F9. You
should observe a breakpoint approximately 8 bus cycles after 5 was written to "ticks". Scroll
up in the program disassembly window to see the "INC" opcode or view the last 8 bus
cycles in the trace buffer.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 44

EXAMPLE 2:

Type "1234 hex" in word 36 (use Data window) and then type in a LD 20, 36 opcode in the
Program window. Checking ARD, RD, and DRD, entering 36 as address and 1234 as
data (all mask bits checked) results in a breakpoint approximately 8 bus cycles after the
read of 1234 from register RAM location 36.

Menu Item Hot Key Function

At .. <Alt>F2 Set a breakpoint by address, line, or line in module.

Setup .. <Alt>BS Open a breakpoint editing dialog box.

Disable all <Alt>Bi Disable all breakpoints from being active while remaining
in the list.

Delete All <Alt>BD Clear all existing breakpoints.

Break now! <Ctrl>C Immediately halt the emulation.

Config Menu

Menu Item Hot Key Function

Project name .. Choose a configuration or project from a list of existing
projects, or create a new one.

Paths .. <Alt>CP Sets the default directories for finding load files, source
files, and emulator files.

Emulator Hardware
..

<Alt>CE Sets the emulator board address, controller type, and
Chip Select registers reset values.

Miscellaneous .. <Alt>CM Sets automatic PC & SP reset value, DDE sampling
interval, and memory scroll range values.

Color .. <Alt>CC Assign colors to windows.

Full Reset <Alt>CF Reloads on-pod logic & performs reset.

Trace .. <Alt>CT Please refer to the Trace Chapter for information about
the Trace Config dialog box.

PP Analyzer <Alt>CA Open a Performance Analysis control window and start
recording addresses.

Memory Coverage
..

<Alt>CV Open the dialog box that controls Memory or Code
coverage.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 45

These next nine submenus share one location in the menu bar. The menu displayed
corresponds to the kind of child window selected. Selecting a different kind of child window
will change which menu is displayed. To select a different window, either use the Window
menu, or just click the mouse on any part of the desired window.

Program Menu

Menu Item Hot Key Function

Address.. <Ctrl>A Scroll the selected Program window to the specified
address.

Origin (at program
counter)

<Ctrl>O Scroll the Program window to display the PC address.

Set new PC value
at cursor

<Ctrl>N Set the Program Counter to the address at the cursor.

Module <Ctrl>F3 Open a dialog box that allows quickly scrolling the
Program window to the start of any module.

Function <Ctrl>F Open a window listing all the functions in all modules
loaded. Selecting one will scroll the Program window to
the start of that function.

View source
window

<Ctrl>V Scroll (or open) a Source window to show the source at
the current Program window cursor.

Toggle breakpoint F2 Enable or disable a breakpoint at the cursor.

Source Menu

Menu Item Hot Key Function

Address.. <Ctrl>A Scroll the selected Source window to the specified
address, which may be a function name or a label.

Origin (at program
counter)

<Ctrl>O Scroll the Source window to display the Program Counter
address.

Set new PC value
at cursor

<Ctrl>N Set the Program Counter to the address at the cursor.

Module <Ctrl>F3 Open a dialog box that allows quickly scrolling the
Source window to the start of any module.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 46

Function <Ctrl>F Open a window listing all the functions in all modules
loaded. Selecting one will scroll the Source window to the
start of that function.

Call stack .. <Alt>SC Opens a window that displays the C call stack and
passed parameters to reach the current Program
Counter.

View assembly
code

<Ctrl>V Scroll (or open) a Program window to the current
program counter (not source window cursor).

Toggle breakpoint F2 Enable or disable a breakpoint at the cursor.

Data Menu

Menu Item Hot Key Function

Address.. <Ctrl>A Scroll the selected Data window to the specified address.

Original Address <Ctrl>O Scroll the selected Data window to the last address used
in an Address.. menu command.

Edit .. <Enter> Alter the contents of the highlighted location.

Block move.. <Ctrl>B Move a segment of RAM to another location (in RAM).

Fill.. <Ctrl>F Fill RAM with the specified value or pattern.

DataDisplay as.. <Ctrl>D Set the data display mode (ASCII, hexadecimal bytes,
long integers, etc. See page 50 of the manual for the
complete list of formats).

Address space .. <Ctrl>-
<Space>

Set the address space for the selected Data window.

ShadowRam Menu

Note: ShadowRAM is not supported as of this printing. Please check your current
version of software.

Menu Item Hot Key Function

Address.. <Ctrl>A Scroll the selected ShadowRam window to the specified
address.

Original Address <Ctrl>O Scroll the selected ShadowRam window to the last

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 47

address used in an Address.. menu command.

Display as.. <Ctrl>D Set the data display mode (ASCII, hexadecimal bytes,
long integers, etc. See page 50 of the manual for the
complete list of supported formats).

Register Menu

Either select a register then select this menu item, or more simply, select a register and
type a new value. The first character typed will open the same dialog box as selecting the
Edit menu.

Trace Menu

Please refer to Chapter 4: Trace Board for all information regarding the Trace board and
user interface.

Stack Menu

Menu Item Hot Key Function

Parameters in Hex <ALT>SP Display the function parameters in hex instead of in their
declared type.

Show function <ALT>SS Not implemented at this time.

Watch Menu

Menu Item Hot Key Function

Add .. <Insert> Open a dialog box for adding a variable to the Watch
window.

Edit .. <Enter> Open a dialog box for editing an existing variable in the
Watch window.

Remove .. <Delete> Delete the selected variable from the Watch window.

Window Menu

The Window menu items open new windows, close existing windows, select windows, and
arrange windows on the screen.

Menu Item Hot Key Function

Open a new <Alt>WNP Open a new Program window.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 48

program window

Open a new source
code window

<Alt>WNS Open a Source window.

Open a new data
window

<Alt>WND Open a Data window.

Open a new
register window

<Alt>WNR If one is open, it will ask "Are you sure?"

Open a new
shadow ram
window

Open a new ShadowRam window.
(Note: ShadowRam is not supported as of this printing.
Please check your current software version.)

Open a new
Special Registers
window

<Alt>WNE Open a new Special Registers window.

Open a new trace
window

<Alt>WNT Open a new Trace window.

Open a new Watch
window

<Akt>WNW Open a new Watch window.

Toggle help line <Alt>WH Turn on or off the text at the bottom of the EMUL296™-
PC window.

Refresh <Ctrl>R Repaints the screen.

Tile windows <Alt>WT Resize and arrange the windows within the EMUL296™-
PC application.

Cascade windows <Alt>WC Resize and overlap the windows within the EMUL296™-
PC application.

Arrange Icons <Alt>WA Line up any closed EMUL296™-PC icons at the bottom of
the main window.

Zoom F5 Expand the selected window to fill the EMUL296™-PC
window.

Next window <Ctrl>F6 Change the currently selected (highlighted) window.

Close <Alt>F4 Close the currently selected window.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 49

Below the Close menu item, there is one menu item for each open window, and the active
window will be checked. Selecting one of these items will open the window if it is closed
down to icon size, and activate it.

Help Menu

Selecting the Info .. menu item will open a box that displays the application version number
and date. Please have this information handy when calling for support.

Dialog Boxes

Many menu selections open dialog boxes that allow you to input more specific information.
Some of these dialog boxes are described above next to their menu items. The rest are
described in this section.

Child Windows

There are nine primary child windows created by EMUL296™-PC: Program windows, Data
or Memory windows, Inspect windows, Source windows, a Registers window, a
SpecialRegs window, Call Stack window, Watch windows, and Trace windows (even if
you have no Trace board). All of these windows are opened by selecting the corresponding
item in the Window menu.

Any number of child windows may be open at the same time. Any number of child windows
can overlap but only one child window is active (has the focus) at a time. Some may be
scrolled and resized to view any address desired. Their locations and sizes are saved to
the current project file when EMUL296™-PC exits, and will be restored when the software
restarts.

Each child window has a corresponding menu that appears between the Config menu and
the Window menu. The menu contains items that only make sense within the context of
that window. This window-specific menu will also appear at the cursor when you click with
the Right mouse button in the body of the active window.

Register Windows

The Registers window displays the CPU registers. All registers are displayed in
hexadecimal notation. Clicking anywhere in the Registers window will select that window
(make it the active window) and right-clicking brings up the Registers menu. The operation
supported in the Registers window is editing register contents.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 50

The menu also lets you turn on or off, a display mode that, whenever the window is
updated, compares the current values with the last values displayed and highlights
(displays in a different color) the registers that have changed.

Data and Shadow RAM Windows

Note: ShadowRAM is not supported as of this printing. Please check your current
version of software.

Use Data windows to examine or modify emulation or target memory directly. EMUL296™-
PC uses the controller to read and write RAM, so the Data window cannot be updated
while the emulation is running. Instead, asterisks will be displayed until the next time the
controller starts executing monitor code.

Data can be displayed or modified in various formats as shown in Figure 32:

Figure 32. Data Display Formats

Note: 32 and 64 bit IEEE_754 floating point numbers must be word aligned. Some
compilers support packed structures that can have floating point fields that
start on an odd address. These fields will not be displayed properly in a Data
window.

Selecting any Data window displays the Data menu which supports filling memory, jumping
the selected window to a specific address, setting an address space, and setting the
display mode (hex, ASCII, etc.) options .

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 51

Changing a value at any memory location is as easy as selecting the byte, word, or long
word to change and then typing the new value. The first character you type will open a
small data entry window, shown in Figure 33.

Figure 33. Editing Memory with a Data Window

Always enter the new data in the same format that the data is displayed. If the Data
window is displaying ASCII characters, type the new character (not a string) in ASCII. If the
Data window is displaying signed integers, enter the new value as a decimal number.
Symbols are supported but their type is ignored.

If you display the data in bytes, only a byte will be written to memory for each update. In
other words, updating one byte uses a single bus cycle that is one byte wide. On the far
right side of the Edit data dialog box is a small check box labeled with the letter C. This
check box impacts how the emulator interprets the data you enter. If you have a symbol
named "abcdef" and you are displaying in 16 bit hex, it is not clear whether to interpret
"abcdef" as a symbol name or as a hex number. With the box checked, the emulator uses
C syntax first, so it will be treated as a symbol name. Without the C box checked,
assembler rules apply first, and it will be interpreted as a hex number (see far right edge of
Figure 33).

Custom Display Format

Selecting the custom format option opens a dialog box that lets you input a C printf format
string. All standard C formats are allowed, including the newline character. If you are trying
to display odd address integers or floating point numbers, you must use the custom display
format.

Program Windows

A Program window disassembles and displays code memory. One line in the Program
window is always highlighted. This is the cursor. The color of the highlighting and the
window depend upon how you have configured your color settings. (See page 27 for
information about how to change the color settings.) Use the cursor to set and disable
breakpoints, set the program counter, and invoke the in-line assembler.

The first column is the hexadecimal address. If the address is highlighted, there is a
breakpoint at that address. You may set or inactivate a breakpoint by clicking on the
address. The second column is the hexadecimal value at that address. Between the
address and the hexadecimal data may be an arrow pointing to the right, indicating the
current program counter. The third column contains the disassembled instructions and
operands.

A comment will sometimes appear to the right of the highlighted instruction. The comment
displayed is a function of the kind of instruction and is a hint about what will happen when

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 52

the instruction is executed. For example, if the highlighted instruction will change the
contents of memory, the hint will contain the value about to be overwritten.

Program windows can control the emulation. To set a breakpoint, click once on the
address portion of the instruction where you want the break. Or, you may click once on the
desired instruction (to highlight that instruction) and then click on it again to highlight the
address. A breakpoint is indicated by displaying the address with white letters on a black or
dark background. This second mouse click (not a double click) creates the breakpoint. To
deactivate (not delete) that breakpoint, click again on the same instruction. The address
will no longer be highlighted and the breakpoint will be inactive. To delete the breakpoint,
use the Setup .. dialog box from the Breakpoints menu. Any highlighted instruction can be
a temporary breakpoint. The Run menu item Go until cursor will use the cursor as a
temporary breakpoint.

In-line Assembler

The in-line assembler is easy to use; simply highlight the instruction or address you wish to
change in the Program window and type. The first character typed will open an edit dialog
box to display the characters you type and allow you to edit your assembler source line.
Once the source line is as you want it, press <Enter>.

The in-line assembler will translate the input line according to the syntax described in the
80C296 data books and replace the former opcode(s) and data with the new opcode(s)
and data. Note that the assembler will write as many bytes as required for the new
instruction. This may overwrite part or all of subsequent instructions. Be sure to examine
the subsequent instructions as well as the new instructions for correctness.

Source Windows

The Source window displays the C source (or assembler source if the assembler supports
source line debugging) of the module containing the Program Counter. Like a Program
window, a Source window displays the source text, line numbers, a cursor (the blinking
underline), and a small arrow between the line numbers and the source text to indicate the
current Program Counter value.

After each single step, and during each animation pause, the Source window scrolls to
show the source line that generated the instruction pointed to by the new Program
Counter, if it was generated by a source line.

Displaying and toggling breakpoints in Source windows is different than in Program
windows. In Source windows, breakpoints are displayed by inverting (or highlighting) the
entire source line. In Program windows, only the address is highlighted. In Source
windows, a single click on any line number (or address in the Program window) will toggle
the breakpoint. In both kinds of windows, pressing F2 will toggle a breakpoint on the
highlighted instruction.

When a Source window appears blank with the window title "Source", it usually means that
the program counter is pointing to instructions derived from a module with no debugging
information. As soon as the PC points to an instruction from a C module or assembly

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 53

module with line number symbols, the Source window will show that text, and the title on
the window will change from "Source" to the name of the source file being displayed.

The simplest way to find the first line of source is to reset the controller, click on the
Source window title bar to select it, and then execute a single step by pressing the F7 key
(or by clicking on the Step button on the speed bar).

When the Program window is selected, a single step means a single opcode. The same is
true for animated execution: a pause occurs after every opcode is executed. When the
Source window is selected, a single step means a single source line. Animation will
execute faster when the Source window is selected than when the Program window is
selected because most source lines compile into more than one machine instruction. If the
animation is running faster or slower than you expect, or if single stepping executes more
or fewer instructions than you expect, visually confirm that the selected window is the one
you want to be selected. If in doubt about which window is selected, click on the title bar of
the window you wish to be selected.

Trace Window

For information about the Trace window, please refer to the Trace Board chapter.

Other Windows

Three more child windows used for high level debugging in C are available: the Evaluate
window, the Inspect window, and the Watch window . These windows are opened by
selecting their respective items in the View/Edit menu. Like the other child windows,
selecting one of these open windows will bring a corresponding menu up between the
Config and Window menus.

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 54

Figure 34. C call stack, Evaluate, Inspect & Watch Windows

Inspect Window

The Inspect window displays a single variable, or possibly modifies that variable. To open
an Inspect window, either select the Inspect .. menu item in the View/Edit menu or double
click in the Source window on the variable you would like to inspect. Double-click in an
open Inspect window on a structure member or array element to open an Inspect window
detailing that field.

The Inspect window can stay open just like a Data or Watch window, and it will be
updated whenever the application stops. The variable being displayed may be part of an
equation written following the rules of C that produces a single scalar answer.

Note: If you have an open Inspect window with an assignment statement, every
time the emulator stops executing, the expression will be evaluated and the
variable will be updated. The variable will appear as though your application
is not changing it while the emulator is running.

Watch Window

The Watch window displays multiple variables being watched, one variable per line. Any
local variable in the Watch window that is not in scope will be displayed with three question
marks instead of its value.

Place the cursor on the variable of interest and use <CTRL>W to add it to the Watch
window.

Evaluate Window

The Evaluate window is opened by selecting a variable in the Source window with the
cursor and using <CTRL>E. This allows editing of the current variable by using the C
assignment operator = to the right of the variable. In fact, any C expression may be
performed in this edit window.

Hint: This window can also serve as a hexadecimal calculator, using the C syntax
0x____ for hex numbers.

Stack Window

The Stack window displays the "call stack," or the list of functions called to reach the
current point in the application, and the current value of parameters passed to them (only
supported if the compiler provides the stack information).

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 55

Addresses are displayed and entered using hexadecimal notation or global symbol names.
In all windows (excluding Inspect windows,) values may be edited by selecting that value
(with the mouse or cursor keys) and then typing.

Note: Symbol names are case sensitive. If a symbol cannot be found, try the same
name with a different case. Also note that some assemblers shift all symbols
to uppercase.

RTXC Window

Note: RTXC is not supported as of this printing. Please check your current version
of software.

EMUL296™-PC has built-in support for the RTXC multitasking kernel from Embedded
Systems Products.

One you have opened an RTXC window, you have an interface that is nearly identical to
the debugging interface of RTXC itself. Just as with the kernel debugging command
interface, you must type an exclamation mark (!) to halt normal kernel and task execution.
At that point you can type commands that will display information about the kernel and any
of the tasks. This information includes task priorities, message queues, stack usage, etc.
The "H" command will show you a summary of commands.

For detailed information about using the RTXC debugging features, please refer to manual
that comes with RTXC.

Tool Bar

Just below the menu bar is the "Tool Bar" containing icons or buttons that, like Hot Keys,
execute frequently needed menu options when clicked. The Help button opens the MS
Windows Help application to the page that describes the current context. The Reset button
resets the controller. The Step button emulates one source line or opcode depending upon
which window was last active. The Go button starts full speed emulation that will continue
until a break occurs. While emulating, the Go button changes to Break, and halts
emulation when clicked. The Trace Beg button resets the Trace board and starts bus cycle
recording according to the conditions set in the Trace Setup dialog box.

Figure 35. The Tool Bar

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 56

Help Line

At the bottom of the EMUL296™-PC window is a line of text that, depending upon the
context, explains what the selected item is or what it does. This kind of context-sensitive
help is turned on and off with the Toggle help line item in the Windows menu.

Dynamic Data Exchange

Note: DDE is not supported as of this printing. Please check your current version
of software.

Dynamic Data Exchange (DDE), allows one MS Windows application to send data to
another. EMUL296™-PC uses DDE protocols and export values from ShadowRam to
other applications such as Word for Windows or Excel. You cannot import values to
EMUL296™-PC using DDE. The following example will help you set up the DDE link
between EMUL296™-PC and Excel (or Excel inside Word for Windows).

Note: ShadowRAM is not supported as of this printing. Please check your current
version of software.

To establish a link from EMUL296™-PC to Excel, select the destination cell and enter the
following formula:

=emul296|shadow!'< Shadow RAM address to monitor in hex notation >'

where <> is an address ("5000", for example).

All the pods come with an example file named "TIME.OMF". The TIME program writes the
value of a timer at the location 5010H through 5030H (look at the Shadow RAM in Figure
36). In the ShadowRAM Window you should choose Display as... ASCII. You will see the
seconds and tenths of seconds being updated in your Excel cell, if you do the following:

Select the destination cell in Excel and enter the following formula (see Figure 36, cell A1):

=emul296|shadow!'5016'

The cell will be updated and displayed as words in decimal representation. If you would like
to have it displayed as ASCII, you must write your own function as a Macro under Excel. In
Figure 36 we make a call for function AsciConv in cell A2. The function might look like:

Function AsciConv(word)

AsciConv = Chr(word And 255) + Chr((word / 256) And 255)

End Function

EMUL296-PC Chapter 1: Software User Interface

Copyright 1996 ICE Technology •• 57

The value in the Excel cell will be updated as often as indicated in the Config
Miscellaneous .. dialog box labeled DDE sampling interval. This may be as little as 100
milliseconds or as long as 32K milliseconds (32s).

Figure 36. EMUL296™-PC with DDE to Excel

Note: Editing the memory locations that represent the Stack Pointer, Imask, and
WSR in a Data window will not update the Register window display or the
target CPU registers. Always use the Register window to edit these
registers. In the future, the software will be revised to handle the Register
and Data windows transparently.

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 59

Chapter 2: Emulator Macro User Guide

Introduction

The Emulator Macro System consists of two files together with this
guide. The System requires the 16 bit version of Microsoft Visual Basic 4 as its
foundation. Macro creation uses many of the features of Visual Basic, such as debugging.
The macro writer uses a low level DLL and a library of useful functions. Additional
functionality is easily added by the macro writer. Run macros from Visual Basic for testing
and debugging or as stand alone executables.

General description of the emulator macro setup

There are two files provided in the Emulator directory:

emul296.bas the Visual Basic API

emul296m.ico the icon to use for executable macros

Note: Install Visual Basic before using these files.

The following is a guide to installing the macro system for writing macros and a reference
to the subroutines provided.

Visual Basic Supplemental User Guide

It's easy to write macros:

1. Execute Visual Basic

Set up your icon

1. Make the form invisible

2. Add the emul296.bas file to your project

3. Name your project

4. Write your macro code

5. Create your executable macro

6. Exit Visual Basic

7. Test it!
For detailed instructions, please refer to the section entitled "Procedure for Writing a
Macro".

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 60

General information

Begin by installing Visual Basic Standard or Professional edition according to the
instructions from Microsoft. Use the Standard package for writing macros, and the
Professional package for more sophisticated or database work.

Warning: DO NOT change emul296.bas. Use another module if additions are needed.

We recommend the following Visual Basic options to be found under the Options |
Environment Main Menu selection.:

Require Variable Declaration = Yes

Syntax Checking = Yes

Default Save As Format = Text

Save Project Before Run = Yes

Note: Refer to the Visual Basic manual for more details about the program, as this document
contains only the information required for writing macros.

Procedure for writing a macro

1. Execute Visual Basic, or if it is running, create a new project from the Microsoft Visual
Basic main menu with File | New Project

2. Set up an icon in the main form Properties window (use the icon "emul296m.ico" for
this purpose).
a. In the Properties window, click on the ICON selection
b. At the top of the Properties window, click on the "..." button
c. In the Load Icon dialog box, select the directory where the icon is located

(i.e., c:\emul296)
d. Select the emul296m.ico icon under File Name; Click OK

3. Set visible to "false" in the property window to make the main form invisible.
a. In the main form Properties window, select the "visible" entry
b. Click drop down arrow in the Change Window
c. Click on FALSE

4. In the Microsoft Visual Basic Main Menu, select File | Add File... to add the
emul296.bas file to the project
a. In the Add File dialog box, select the c:\emul296 directory
b. Select emul296.bas; click OK

5. Name the form in the Project, and Save
a. In the Properties box, click on NAME
b. Type in the new name (e.g., "LoadTime") instead of the default “form 1”
c. In the Microsoft Visual Basic main menu, select File | Save Project As
d. Save changes to "LoadTime.frm"? Choose Yes
e. The Save File As dialog box should show "LoadTime.vbp" in c:\emul296 directory;
click OK
f. In the Save Project As dialog box, change the file name of the project file

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 61

to "LoadTime.mak"; click OK
g. The result is a project window with the name "LOADTIME.VBP"

6. Write code in the Form_Load subroutine
a. In the Project window, select the form ("LoadTime.frm")
b. Click the View Code button
c. In the Forms Code window, select "FORM" from the object drop down box
d. Type in the line (indented): "EmulInit"; press Enter
e. Type in the body of the macro code (see example below)

Figure 37: Macro Code Example

f. Type "END", allowing the macro to exit.

7. When the program is finished, make an executable program from the file menu using
the File | Make .EXE command
a. Select File | Make.Exe
b. The MAKE.EXE dialog box appears; check to ensure it shows the correct

file name and directory

NOTE: Change the Application Title at this time if desired.

c. Click OK

8. File | Exit; For any "Save Changes?" Choose Yes

Example of a Macro:
The following is in the general / declarations section of the main form:

Subroutine Description

Option Explicit Force explicit declaration of
variables

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 62

Sub Form_Load () This subroutine executes when the
macro loads and appears in the
Form, Load section of the main
form

Dim byt As Integer Declare byt as an integer variable

Dim ret As Integer Declare ret as an integer variable

Dim dwd As Long Declare dwd as a long variable

Const ShadowRam = 1 Const ProgramWin = 2

Const RegisterWin = 3 Const DataWin = 4

Const SourceWin = 5 Constants for activating the
windows of project: proj11 (see
footnote below)

EmulInit Initialize the macro library and the
Emulator (if not running)

LoadProject "proj1" Load project set up

LoadCode
"c:\emul296\examples\kr\timer\t
ime.omf"

Load the code and symbol file

WindowSelect SourceWin Select the Source window

StepOver Step a couple of times

StepOver

WindowSelect DataWin Select the Data window

SetAddress &H5000 Set the start address to 0x5000

DisplayAs DT_8BITHEX Set the format to 8 bit hex; the
DT_xxx constants are found in
emul296.bas

WindowSelect ShadowRam Select the ShadowRam window

SetAddress &H5000 Set the address to 0x5000

DisplayAs DT_ASCII Set the format to ASCII

WindowSelect ProgramWin Select the Program window

SetAddress &H3000 Set the address to 0x3000

1 For the current version of the macro language, we suggest that you use "project" to specify the MDI child
window locations and their order (see "Projects" on page 18.)

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 63

SendKeys
"nop{ENTER}nop{ENTER}nop
{ENTER}ljmp 3000{ENTER}", True

Assemble some code into the
Program window. The last
parameter (True) is used to wait
for SendKeys to finish before going
on the next statement

PutPc &H3000 Set the PC to the assembled code

byt = 0 Clear the byt variable

ret = GetShadowByte(&H5010,
byt)

Get the byte at 0x5010

MsgBox "Shadow byte at 0x5010 =
" + Hex$(byt) + "h.", MB_OK,
"LoadForm"

Display the value (MB_OK is found
in emul296.bas) in a message box

Go From 0x3000

For dwd = 0 To 100 A wait loop

DoEvents Let someone else do something

Next

Break Stop executing

dwd = GetPc() Get the current PC

MsgBox "The PC is: 0x" +
Hex(dwd) + ".", MB_OK, "Test
Macro"

Display it

EmulReset Prepare to run the previously
loaded code module

SetBpAtLine 138 Set a breakpoint

GoToBP Go until a breakpoint is
encounterred

End Exit from macro

End Sub

9. Enter File Manager and select emul296 directory
a. Drag the executable file (in this case "LOADTIME.EXE") from the File

Manager into a file folder in the Program Manager
b. Execute the program by double clicking on the icon
c. Drag the project file ("LOADTIME.MAK") from the File Manager into a file

folder in the Program Manager
d. To edit your macro, execute Visual Basic by double clicking on the icon

produced from step c

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 64

Subroutine Reference

Constants
Use constants for the Visual Basic message box subroutine and the DisplayAs values for
the different data formats. Refer to emul296.bas for the names of these constants. Any
other constants needed are documented in the Visual Basic or Visual Basic Professional
Help files.

Global Variables
Use the following four global variables (DO NOT modify them in any way):

EmulHandle This is the Windows handle for the emulator program.

EmulName This is the full emulator program name as appears in
the title bar.

EmulIniName This is the name of the current emulator ".INI" file.

EmulWorkDir This is the current working directory (usually the
directory that the emulator program resides in).

Windows API If needed, the Windows API is documented in the
Visual Basic Professional Help File system.

Windows API

If needed, the Windows API is documented in the Visual Basic Professional Help File
system.

Warning: Use either fixed strings (Dim str As String * 100) or variable strings (Dim str As
String) that have been pre-initialized, for example using Space$ () to make the string
as long as needed for the API call.

Subroutines

Subroutine Description

Sub Break () Stops emulator execution.

Sub DisplayAs (ntype As Integer) Changes the current display format in the
active window. (Note that this can only be
used in windows that have a display format.)
The window must be made active with Window
Select.

Sub EmulInit () Sets up the macro for execution and starts the
emulator program if it is not running.

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 65

Sub EmulReset () Performs a normal emulator reset.

Function FindEmulWindow () As
Integer

Used internally to set up the global variables,
and is not normally used in macros.

Function GetByte (ByVal address As
Long) As Integer

Gets a byte from data memory.

Function GetDWord (ByVal address
As Long) As Long

Gets a long or double word from data memory.

Function GetPc () As Long Gets the current value of the program counter.

Function GetPsw () As Long Gets the current PSW.

Function Get ShadowByte (ByVal
address As Long) As Integer

Gets a byte from ShadowRam.

Function Get ShadowWord (ByVal
address As Long) As Integer

Gets a word from ShadowRam.

Function GetSp () As Long Gets the current stack pointer value.

Function GetWord (ByVal address As
Long) As Integer

Gets a word from data memory.

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 66

Sub Go_() Starts executing the emulator at the current
address.

Sub GoToBP () Starts executing the emulator from the current
address and waits until a breakpoint occurs.

Sub LoadCode (codefilename As
String)

Loads a program for emulation.

Sub LoadProject (pname As String) Loads an emulator project setup file.

Sub ModuleSelect (module As
String)

Selects a new module in the current program.

Sub PutByte (ByVal address As
Long, byt As Integer)

Writes a byte into the data memory.

Sub PutDWord (ByVal address As
Long, ByVal dwrd As Long)

Writes a long or double word into data
memory.

Sub PutPc (ByVal address As Long) Sets a new value in the program counter.

Sub PutPsw (ByVal pswreg As Long) Sets a new value in the PSW.

Sub PutSp (ByVal address As Long) Sets a new value in the stack pointer.

Sub PutWord (ByVal address As
Long, ByVal wrd As Integer)

Writes a word into data memory.

Sub RePaint () Redisplays everything in the emulator main
window.

Sub SaveTraceText (filename As
String, startframe As Integer,
stopframe As Integer)

Save the current trace from the "startframe"
number to the "stopframe" number into the file
name specified as a text file.

Sub SetAddress (address As Long) Sets an address in all windows that can have
an address setting. The correct window must
be made active with Window Select.

Sub SetBpAtAdr (ByVal address As
Long)

Sets a breakpoint at the requested address.

Sub SetBpAtLine (ByVal lineno As
Integer)

Sets a breakpoint at the requested line
number.

Sub SetTrigger (ByVal trignum As
Integer, ByVal active As Integer)

Make the trigger "1, 2, 3, or filter" active or
inactive.

Sub StepInto () Executes one instruction, including a jump
instruction.

Sub StepOver () Executes one instruction or all the instructions
in a subroutine.

Function Sym (Symname As String) Gets numeric value of a symbol.

EMUL296-PC Chapter 2: Emulator Macro User Guide

Copyright 1996 ICE Technology •• 67

As Long

Sub WaitUntilReady () Wait for the emulator to become READY.

Sub WindowSelect (number As
Integer)

Activate one of the current child windows, e.g.,
Data window, by the number on the Window
pop-up menu.

EMUL296-PC Chapter 3: Emulator Board

Copyright 1996 ICE Technology •• 69

Chapter 3: Emulator Board

EMUL/LC-ISA Emulator Board

Figure 38: EMUL/LC-ISA Emulator Board

The EMUL/LC-ISA board is an 8 bit P.C. card that fits into any slot. The jumpers on the
emulator board control three things: 1. the address used to communicate with the Host PC,
2. the maximum PC clock communication rate to the target, and 3. whether or not power is
provided to the target through the LC connector. These are all described in more detail
below.

Note: The power jumper J2 should be left in for EMUL296-PC users.

EMUL296-PC Chapter 3: Emulator Board

Copyright 1996 ICE Technology •• 70

Detailed Installation Instructions

Setting the I/O address jumpers -- J1

Note: The factory default is 0x200 for the software and hardware.

The EMUL/LC-ISA requires 8 consecutive I/O address from the PC’s I/O address space (0
Hex -- 3FF Hex) that begin on an address that is a multiple of 8. Set the emulator board
address using the jumpers in header J1. These addresses must not conflict with any other
I/O device. Each pair of pins in J1 represents on bit in the 10 bit address. Address bits 0,
1, and 2 represent addresses within the 8 consecutive addresses and do not have pin pairs
to represent them. This leaves 7 address bits (pin pairs) to set with jumpers. Shorting pins
represents a 0 in the address. A pair of pins with no jumper represents a 1. Below are 4
examples where the Least Significant Bit (LSB) is on the left, as it in on the board, if you
are holding the board so you can read the silk-screened labels, with the 25 pin D connector
on the right.

200 HexPC Bus Address
Pin labels

Jumper Settings

A3 A9
208 Hex

A3 A9
300 HexPC Bus Address

Pin labels

Jumper Settings

A3 A9
3F8 Hex

A3 A9

Factory Default

Figure 39: Emulator Header J1

Setting the Target Communication Rate -- Header JP1

The PC’s system clock is divided by moving the jumper on JP1.

Set the fixed synchronous communication rate by using Figure 40 to look up the clock rate
in the lower row and place one jumper on the header JP1 between the pins indicated in the
upper row. There must be only ONE jumper on this header.

EMUL296-PC Chapter 3: Emulator Board

Copyright 1996 ICE Technology •• 71

3
&

 4
1

&
 2

5
&

 6
7

&
 8

9
&

 1
0

11
 &

 1
2

13
 &

 1
4

15
 &

 1
6

17
 &

 1
8

8.
3

M
H

z

4.
2

M
H

z
2

M
H

z
1

M
H

z

52
4

K
H

z

26
2

K
H

z
13

1
K

H
z

65
 K

H
z

32
 K

H
z

JP1

CLKOUT Rate:

Short these pins:

RP1

Figure 40: Header JP1

Note: The pins on JP1 are not numbered on the board. The picture above shows the orientation
of both JP1 and RP1 as they appear on the emulator board. Both pin 1 holes are shown
as a square, as they are on the emulator board.

Communication Rate Jumper

The communication rate jumper MUST be set in position 3,4.

Trace Clock Rate

This clock is used for logic download to the Pod. If you have any problems starting the
Emulator software when using an external crystal that is less than 16Mhz; you must modify
the .INI file entry for trace clock rate (see below) even if you are not using a trace board.

[TRACE]

clock rate= Enter the POD crystal clock rate here.

The PWR Header -- JP2

Note: Leave this jumper in place.

The third header on the low cost emulator board is the PWR header, which is also labeled
JP2. With the jumper in place, +5 volts is supplied from the PC’s power supply through the
LC connector up to .5 amps.

Power Supply to Pod / Target

The power supply to the pod / target is controlled by jumper(s) on the POD boards. See
the POD-296-256-SA-50 section for information on this jumper.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 73

Chapter 4: Trace Board

Trace Board Introduction

EMUL296™-PC needs RAM to record a history of the data used and instructions executed.
The trace board contains this RAM. The Pod board has the logic and connectors
necessary to support a trace board. The card includes 96 bits of RAM for each trace
record. Trace boards are available with two sizes of trig memory: 256K or 1M.

Trace Board Detailed Installation Instructions

There are two configuration settings related to the hardware that must be set correctly
before the trace board can be used. These are both found in the upper left corner of the
Config Trace dialog box.

First, the software must know that there is a trace board in the PC. To indicate that there is
a trace board installed, click on the Yes button next to Board installed:. If the top of the
Trace window says "Not available" then this option is probably set to disable the trace
board. Figure 41 shows the normal default settings for an installed trace board.

Figure 41. Trace Board I/O Address Setting

Also critical is I/O address:. Be sure to set this field to the same base address as the
emulator.

External Inputs and Controls

The Trace board records eight external digital inputs with every bus cycle. These signals
are input through the 15 pin D connector on the edge of the Trace board.

Note: As external inputs and controls are sampled every frame, you cannot expect
higher time resolution than the sample frame rate.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 74

3
2

6
8

12
13

11
1

5
7

9
4

10

10K

14
15

V CC
V CC

BlackBit 0

BrownBit 1

RedBit 2

OrangeBit 3

YellowBit 4

GreenBit 5

BlueBit 6

VioletBit 7

Red-White TRIGGER IN

GND

TRIGGER OUT

Grey (Ground)

Green-White

Clip Colors

Figure 42. Trace Board Connectors

Two of the micro-clips duplicate the trigger controls found in the SMB connectors2:
TRIGGER IN (J11) and TRIGGER OUT (J10).

Note that the signal voltage levels for TRIGGER IN and TRIGGER OUT are inverted. A
transition from 5 Volts to 0 Volts on the TRIGGER OUT micro-clip indicates that a trigger
has occurred. The signal is held low until the trace board starts recording again.

The TRIGGER IN micro-clip can prevent triggering when this line is held low. As long as
this line is held low, the Last trig event repeat count will not count down, the events that
satisfy the trigger conditions will not cause a trigger, and trace recording will not stop.

2 Some trace boards do not have SMB connectors. If your board does not, and you would like them, contact
customer support at support@icetech.comm

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 75

Introduction to Tracing

A trace history is a time ordered recording of bus cycles (with some other helpful
information). Events that do not affect the CPU external bus, such as testing a CPU
internal data register, will not get recorded. Events that do affect the bus will only get
recorded if the "recorder" is turned on and set up to record those types of events. All
tracing emulators record bus events and not actual instruction execution, so they all must
have some way to deal with the effects of the instruction pipeline. The trace board for
EMUL296™-PC includes pipeline decoding and marks opcode fetches that are not
executed. As a result, the display software can show the trace records as though the
pipeline did not exist, but it can also display the uncorrected bus cycles just as they were
recorded.

Tracing starts automatically every time emulation starts. Even single stepping will turn on
the trace recording during that step. Clicking on the Trace Beg button or pressing the F10
key will also start recording (but until emulation starts, there will be nothing to record). Once
trace recording has started, the Trace Beg button changes to the Trace End button, and
will stop recording when clicked. The trace buffer will continue to collect records until
recording is stopped, either by a trigger, by stopping emulation, by pressing the F10 key, or
by clicking on the Trace End button.

Once emulation has started and bus cycles are "being recorded," every bus cycle is
examined to see if it meets the conditions in the Filter: field of the Trace Setup dialog box.
If it does, then it will be recorded. If it does not, that bus cycle will not be recorded in the
trace buffer. Bus cycles that are not the correct type (opcode fetch, data read, or data
write), or that fall outside the address range(s) specified in the Filter: field, will be
examined to see if they meet any trigger conditions but will not be added to the buffer.

Every time tracing starts the buffer is cleared. After recording a single step, the trace buffer
will only contain the records for that one instruction or source line. Once the buffer is full,
the new records will begin to overwrite the oldest records. The trace buffer is a ring buffer
that will continue to collect new records and replace old records until recording is stopped.
Triggers without an address qualifier will be made inactive.

Triggers and Hardware breakpoints

The trace board can do more than just record what happens on the controller bus. A
"trigger" can occur when certain conditions on the bus are met. For example, you can
program a trigger to occur when the instruction at 4FE Hex has been fetched for the fourth
time. Triggers can start and stop trace buffer recording, and can cause hardware
breakpoints. These are useful if you are executing out of ROM or need to break on
certain hardware conditions. For information about how to create triggers and hardware
breakpoints, see the section titled "Trace Setup Dialog Box" on page 80.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 76

Trace Window

The contents of the trace buffer are displayed in the Trace window. If there is no Trace
window open, you may open one using the Window menu item and selecting Open a new
trace buffer window. Most of the Trace window features are controlled by the trace menu,
and are described in the Trace Menu section below. Please refer to both this section and
the Trace Menu section for a complete description of the Trace window.

Pipeline Effects

When a jump occurs and the pipeline is flushed, some instructions are fetched but not
executed. These fetched but ignored instructions are captured by the trace board when
they are fetched but the display software will not disassemble them.

Bus Cycle Order

All bus cycles are shown in the order fetched, not in the order executed. The Trace
Window shows the executed fetches, with the last row possibly showing only fetched and
not executed instructions.

Bus Width

The bus size is dynamic and can be either 8 bits or 16 bits wide, but the trace buffer
always records 16 bits of data for the each bus cycle. Whenever the bus is executing an 8
bit bus cycle, the trace board will still record all 16 bits of data on the bus even though the
other 8 bits are ignored by the CPU. Normally, when showing corrected bus cycles, the
Trace window will not display these bytes.

Trace Menu

Like the other window-specific menus, the Trace menu only appears
when the Trace window is selected. The Trace menu contains items
that control how the trace is displayed.

Find Frame number ..

When this menu item is selected, it opens a dialog box to get the
desired frame number. Once the trace buffer has records, this menu
item scrolls the trace window to the record entered in the dialog box.

Search Address ..

This menu item opens a dialog box, shown in Figure 43, to get the desired address, then
searches from the beginning in the frame buffer for the first record that contains the
specified address.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 77

Figure 43. Trace Search Dialog Box

By default, the search includes only opcodes and starts at the first (oldest) frame in the
buffer (not necessarily frame 0). By selecting options in the dialog box, you can choose the
search direction and limit the search to only certain kinds of bus cycles.

Search Next Address

From the current frame, this menu item searches forward for the next occurrence of the last
address searched. If a search has not yet been specified, no frame will be found.

Search Previous Address

From the current frame, this menu item searches backward for the next occurrence of the
last address searched. If a search has not yet been specified, no frame will be found.

Find Trig point

This menu item will scroll the Trace buffer window to show frame 0, which is the trigger
point.

Save trace as text ..

With this menu item, you can save any portion of the trace buffer to a text file suitable for
inclusion in documents or processing with text manipulation or word processing tools.
Selecting this menu item will open a dialog box that lets you set a range of frames and the
name of the file where the text goes.

The file text will be formatted in the same manner and with the same options as the text in
the Trace buffer window. If you want the text file to include timestamps, arrange for the
Trace buffer window to show them as well.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 78

Show misc. data

Selecting this menu item will display another 24 bits (shown as 3 bytes in hexadecimal
notation) for each record. The trace board records 8 external input bits from the DB15
connector, 8 processor status signals, and 8 signals on the TRACE header on the pod with
each trace record.

Of the three bytes, the left most shows the bits input from the DB15 connector. Figure 42
on page 74 shows how the pins of the DB15 are used and which color micro-clip is
assigned to which bit in the display.

The other two bytes are sometimes useful to the Customer Support staff but
generally not useful to our customers. You may ignore these bits until a Customer Support
person asks you to list them.

Show timestamp

The timestamp is not always displayed. By default, to reduce the size of the Trace window,
timestamps are not shown. To see the timestamp, select this menu item.

Benchmarking Using Timestamp

When you have captured a trace and are looking at the timestamp information, keep in
mind that the timestamp reflects fetch activity. Therefore, do not try to look at the
timestamp for an individual instruction to determine the execution time. For example, if you
want to know how long it will take to execute a multiply instruction, type in ten multiply
instructions in the Program Window. Then, type in a jump instruction to the start of the
multiply sequence. Executing this sequence and looking at the trace result will let you
determine the execution time by comparing the time the first byte of a multiply instruction
was fetched to the time the first byte of the subsequent multiply instruction was fetched.

Relative timestamp

The timestamp is an integer which is large enough to uniquely number all CLKOUT cycles
in a 26 hour period running at 50 MHz. The default display mode for the timestamp is to
show the cumulative time since (or before) the trigger. To see the delay between individual
instructions or bus cycles, select this menu item.

This display mode is also useful for timing segments of code. In the example below, only
the bus cycles at addresses 400-410 were recorded. You can see that each timestamp is
shown relative to the timestamp of the next frame in the buffer. Note that frame -1 is not
743 milliseconds long. Rather, it was 743 milliseconds between the end of the bus cycle
that fetched the first word of frame -1 and the end of the bus cycle that fetched the first
word of frame 0. It took 743 to finish fetching the operands for frame -1, (execute any other
instructions in the loop,) and to fetch the first word (4E56) of frame 0.

Also note that the timestamp for the first frame shown, frame -9, shows the time since the
very first frame in the buffer, not the time to the previous frame. This is why the timestamp
show 748 milliseconds, not 742 milliseconds, as is shown for the other times through the
loop.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 79

T = 0 at Cursor

The software has the ability to force the timestamp value to zero for a certain frame, giving
the user an easy way to measure execution time (<CTRL>Z).

Figure 44. Example of relative timestamp displayed in seconds

Convert cycles to time

The actual timestamp in the trace record is a count of clock cycles. When this menu item is
checked, the timestamp is displayed in seconds (or fractions thereof) as shown in Figure
44. It uses the value in the Clock field of the Trace Setup dialog box to convert the cycle
count to time. If the value in the Clock field is incorrect, these timestamps will be incorrect
also. When unchecked, the Trace window displays the timestamp in clock cycles.

Note: If the application changes the clock frequency dynamically, the timestamp
displayed in seconds may or may not be correct. The timestamp displayed in
clock cycles will always be correct no matter what the clock speed.

Synchronize program window

When this menu item is checked, as you move the cursor around the Trace window from
opcode cycle to opcode cycle, the cursors in the Program and Source windows will also
move to point to the instruction fetched and it's context. If the application is running, only
the Source window will scroll.

Trace setup ..

Selecting this menu item, just like selecting the Trace .. menu item in the Config menu,
opens the Trace Setup dialog box. The details of that dialog box are described in the
following paragraphs.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 80

Toggle trace (stop/run)

If the trace board is recording cycles, this menu item will turn off cycle recording.
Conversely, selecting this menu item before the trace board has started or after a trigger
has occurred will turn on recording, just like clicking on the Trace Beg button.

Trace Setup Dialog Box

Board Installed

The box next to Yes must be marked before the trace board will be used. If this box is
marked and the board is not there or the starting I/O address is not set correctly when the
application is started, the Trace Setup dialog box will be opened automatically. If the board
is installed and the No box is checked, the application will probably not execute normally. It
might only single-step, and not run at full speed.

Address

The I/O Address field is the field that identifies the start of the emulator board I/O
addresses. This value must agree with the setting of the trace board header jumpers. For
setting the trace board address header jumpers, see the installation section starting on
page 73.

Trace Memory

This box, shown in Figure 45, displays the number of records that can be stored in the
trace board. This field is set whenever the emulator and trace board are reset.

Figure 45. Size of Trace Memory

 Triggers

A trigger is an event that occurs once for each time the trace recording is started. There
are two ways to set up triggers and bus cycle filtering: Normal mode and Window mode. In
Normal mode, more control is given to triggers. A trigger in Normal mode either stops
recording or starts the countdown until recording will be stopped and can cause a hardware
break. (Frame 0 is always the frame where the trigger occurred.) In Window filtering mode,
more control is given to controlling which bus cycles are recorded. Each mode is described
in more detail below.

The field labeled Post trigger samples contains the number of frames to be recorded after
the trigger occurs. Once the trigger occurs, recording continues until the number of
samples recorded is equal to the number in this field. If it is set to 0, no cycles will be
recorded after the trigger occurs. If it is set to 10, then 10 cycles will be recorded after the

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 81

trigger occurs. If it is set to the total buffer size, then frame 0 will always be the first frame
in the buffer.

Note: If the trace board is configured to break execution when the trigger occurs,
the Post trigger samples field is not used because recording will stop when
execution stops. If the on trace stop box is checked, then this field controls
when the break will occur.

The Last trigger repeat count field contains the number of times the highest numbered
trigger conditions must be met before the trigger itself occurs. If a trigger condition is set for
an opcode fetch at address 400 and the Last trigger repeat count is set to 10, the first 9
fetches from address 400 will be counted and the trigger will occur when that opcode is
fetched for the 10th time.

This count may be as high as 256, and applies to the last (highest numbered) trigger event
that has conditions in Normal filter mode. If Trig event3 has no conditions, it will be
ignored and the conditions in Trig event2 will be counted. If neither event 2 nor event 3
have any conditions, the Trig event1 events will be counted.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 82

Filter Mode: Normal

Using the Normal filter mode, you can set up 3 trigger conditions. Each trigger condition is
a series of statements that are OR'ed together logically. Each statement contains one
address range and one type of bus cycle. Approximately 2000 statements may be used in
each trigger condition. The three triggers conditions are tested sequentially: once the
conditions for trigger 1 are met, the conditions for trigger 2 (if present) are tested. If there
are no trigger 2 conditions, then all the conditions are satisfied and the trigger occurs. and
likewise for trigger 3. See the section starting on page 95 for information about setting and
changing the trigger conditions.

Figure 46 shows that trigger 1 has one condition and it will be met by "any" kind of bus
cycle that includes any address from 0 to 7FFFF.

Figure 46. Trigger on anything

With Filter mode: Normal, bus cycles are recorded until a trigger stops the recording.
Recording bus cycles is a separate activity from deciding to trigger or not, and so it has a
separate set of conditions. The Filter: field can contain up to 2000 statements that are
logically OR'ed to decide whether to record the bus cycle or not. In Figure 47, the trace
board will record everything from the start of main to MAIN + 100H, the opcode fetches
between line 93 and 108 from the module TIME, and only the data bus cycles (read and
write cycles) to and from address timer.sec (1338H).

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 83

Figure 47. Selective Recording

Note: Trigger events must be sequential. Also, the Address and Data mask are
ANDed with the entered hex address or data value.

Extend Recording

Also shown in Figure 47 is a button with the label Extend recording. Extended recording
means continuing to record 3, 4, or 5 records after the filter condition has turned off
recording. Every time the filter allows a record to be captured, a counter is set. If the next
instruction does not pass through the filter, the record is captured anyway and the counter
decrements. The same is true for the next few instructions, until the counter reaches 0.
Then, if a record is filtered out, it is not captured. This behavior will be easier to understand
when you see where it is useful.

To see how Extend recording may be useful, let us say that some part of the application
is calling the function that ends with line 161 in the module TIME. Line 161 is the closing
brace in the C source file from the example in Figure 47. How do you find out what part of
the code (possibly in assembly language) is calling that function?

One way is to record everything and then break on line 161 with a small post trigger
sample count. Line 161 will be executed, the trigger will occur, then a few frames will be
captured from after line 161, showing where the program counter went when returning from
the function call. Out of 128K records, only one frame will contain the information you are
looking for. If that is not the call you are interested in, you can set the Last trigger repeat
count field but you won't know whether the function call you want to capture will be next or
the ten thousandth call.

It will be far more efficient to use the emulators resources to selectively capture only those
records that are likely to have the information you want. With Extend recording, and with
the filter set as shown in Figure 47, every time the trace board captures an opcode fetch
from line 161, it will also capture the next 3, 4, or 5 bus cycles, and those bus cycles will tell
you where the program counter went after line 161. When you use Extend recording, the
trace board may contain up to 32K instances of where line 161 was executed and where
the program counter went afterwards.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 84

Filter Mode: Window

Using the Window filtering mode gives a different kind of control over what cycles are
recorded, and can selectively record program threads in a way that record filtering cannot.
Like trigger conditions, the Enable recording and Disable recording conditions are set
using the editor described below, and each condition is logically OR'ed with all other
conditions to find a match. Bus cycle recording will start when the Enable recording
conditions are met, and will stop when the Disable recording conditions are met. Once
recording has started, the conditions in the Filter field decide whether to record a bus cycle
or not.

Figure 48: Filter Mode Window

Editing the Trigger Conditions

To set up the trigger conditions, click on one of the triggers (or recording controls), click on
the statement you wish to change, then click on the Edit button. This will open an Address
qualifier window like the one in Figure 49. The Start: field will be selected. Type the
address range start (either a hexadecimal number or a symbol name), hit <TAB> to get to
the End: field (or click on it), type the upper limit of the address range, and then click on
one of the types of cycles. Figure 49 shows how to monitor a single address: put that
address in both the Start: and End: range fields.

Figure 49: Data mode = Opcode

By default the Data mode field has the Opcode box marked. Marking the Data box gives
you the options shown in Figure 50.

EMUL296-PC Chapter 4: Trace Board

Copyright 1996 ICE Technology •• 85

When addressing 16 bit wide memory, triggering on a single byte WRITE to an odd
address occurs on the high byte on the data bus. To set up a trigger for this condition, set
the mask to FF00 and data qualifier in high byte.

Note: Future versions of the software will make this feature more intuitive.

Figure 50: Data mode = Data

Note: Changing the Data mode for one trigger also changes the Data mode for all
other triggers. After changing the Data mode, review all the conditions for all
triggers to make sure they are still correct.

When this dialog box contains the desired address range and the Cycles: field has the
correct button selected, either press the <Enter> key or click on the OK button. Each
trigger event can have approximately 2000 conditions.

Break Emulation? Box

A trigger can cause a hardware break either when the trigger occurs or when recording
stops, after the Post trigger samples frames have been recorded. Mark either box (or
both). This feature means you can set breakpoints "on-the-fly".

Figure 51: Turning on Hardware Breakpoints

Note: There may be a delay of up to 3 instructions between the trigger that causes
break and when the break actually occurs.

EMUL296-PC Chapter 5: Pod Boards

Copyright 1996 ICE Technology •• 87

Chapter 5: Pod Boards

Features Common to All Pods

Every pod is a fully functional, stand-alone 8xC296 board, with a processor, RAM, a
crystal, PROM, and logic to glue all those pieces together.

How It Works

Clicking on the Reset button tells the emulator to pull the RST line low, resetting the
controller. When the RST line is released, the controller begins by executing instructions
that allow the emulator board to communicate with the pod. These instructions are the
monitor code. The controller will continue to execute monitor code until you click on the
Step button, the GO button, or select Reset and go from the Run menu.

When you click on the Break button, a specific kind of non-maskable interrupt occurs, the
return address is pushed on the stack, the program counter is loaded with the
corresponding vector, and it continues to run at the new address. The new address is
mapped to the pod. That memory contains the monitor code.

When sections of memory are displayed on your screen, it is the controller that actually
reads the memory locations and sends the values back to the emulator board in your PC. If
the emulator cannot read the contents of memory, then your application will not be able to
either.

Note: If you are running user code, target power can be turned off/on to emulate power on if
reset is held low during power off. Some emulation chips will require a special power
board.

Stack Pointer

Because the emulator pushes the return address on the stack, the Stack Pointer must
point to valid memory and there must be room on the stack for 2 bytes (or 4 bytes for users
of chips with larger addressable ranges) to hold the address.

In addition, there is a lower limit to the Stack Pointer. If the Stack Pointer has a value of
0x50 or less, it interferes with emulation. This is not usually a problem but we want you to
know about it.

Indicator Lights

The pod boards contain 4 lights. They are labeled HALT, RESET, RUN, and USER. The
HALT light is lit whenever the P2.5 (HOLD#) goes low. The RESET light will only be lit
when the emulator resets the controller. The RUN light will be lit whenever the controller is
executing user code (as opposed to monitor code). You may use the USER light to indicate

EMUL296-PC Chapter 5: Pod Boards

Copyright 1996 ICE Technology •• 88

the state of any signal on the pod or target by connecting a wire from the desired signal to
the test point labeled TP1. It will be lit when the test point is brought low.

Note: If using the HLD pin as low speed I/O, disregard the light.

How to Break Two Emulators Simultaneously

At the edge of the pod board there are two test points called BRK_IN and BRK_OUT. The
BRK_OUT test point will show logic low when the user code stops. The BRK_IN test point,
if forced to logic low, will make the user code stop. With two emulator systems, you can
connect BRK_OUT from one pod to BRK_IN on the other pod to make the two emulator
systems stop user code execution simultaneously.

Note: We can provide a DOS program to start two emulators simultaneously; t = start of first
emulator to start of second emulator; t < 50 ns.

Trace Input Pins

Next to the indicator lights and the test point is an array of 8 pins, labeled TRACE. These
pins may be connected to any logic signal and will record the state of that signal with every
trace record. Pins 0 through 3 are sampled on the falling edge of ALE, with the address.
Pins 4 through 7 are sampled on the rising edge of the RD/WR strobes, with the data. For
more information about displaying these bits and Trig-In/Trig-Out, please see the Trace
Board chapter.

Duplicate Resources

The pod board has many resources and your target may also have the same resources. If
the same resource appears on both the target and the pod board, you will have to choose
to remove or disable either the target or the pod resource for all the resources that appear
on both (see below).

When the pod is connected to a target that has no power supply the pod can supply +5
Volts to the target limited by your PC supply capacity and target's sensitivity to under-
voltage. If the target has its own power supply, remove the jumper on the PWR header. If
you do not, it is possible to damage either the target power supply or the power supply in
your PC.

If your target has a crystal operating at a speed different than the frequency on your pod,
you may wish to use it instead of the crystal on the pod. To use the target crystal, find the
two headers labeled TARGET/POD near the pod crystal and place the two jumpers so that
they are on the Target side, not the Pod side. This will disconnect the pod crystal from the
controller on the pod and allow the pod controller to use the crystal on the target.

EMUL296-PC uses a special emulation controller to emulate the 80C296. This special chip
has extra pins that give the emulator extra features. The special emulation controller can
map memory, halt execution, set breakpoints, etc. This is why your program must execute
in the controller on the pod and not in the controller on your target board.

Most adapters fit between the pod and the target board, replacing the target controller. In
summary:

EMUL296-PC Chapter 5: Pod Boards

Copyright 1996 ICE Technology •• 89

RESOURCE: WHAT TO DO WHEN THE TARGET HAS IT:

RAM Map the RAM to the Target by using CS0..5

Crystal Move JP7 and JP10 to "TARGET" side of header

Serial Port Do not use J1, remove RXD jumper.

Power Supply Remove the jumper from the PWR header

The black wire with the micro-clip is a ground wire, which is helpful for ensuring that the
pod and target grounds are at the same potential. We recommend you attach this clip to a
grounded point on your target before attaching the pod to the target.

Configuration Requirements

The emulator is designed to be as transparent as possible to the target and the target
application. There is a short list of things that the emulator requires of the target. Those are
described here.

The Intel manuals say that address 18H is reserved for the Stack Pointer. However, when
fetching instructions, a fetch from that address will get the instruction from an external
memory device. On the pod, that address contains the value 0. If you map address 18H to
the target, your target ROM/RAM must also contain a 0.

The emulator requires enough memory to push a return address onto the stack. If the stack
is pointing to memory that doesn't exist or is pointing to address 0, the emulator will be
unable to reach it's monitor code and communications with the emulator will fail.

Do you have enough emulator memory?
A POD-296-256-xx only has 256K of breakpoint memory in parallel with 256K of emulation
memory. That means that you only have four pages to use. If you have pages that
overlap because of this, you should order a 1M pod. For instance, if you access to a
physical memory at address 5000H, it will also show on three other pages: 45000H,
85000H and C5000H. The emulator reads them from page zero.

Internal Addressing or Single Chip Mode

Note: This section pertains only to pods that emulate controllers that support single-chip
operation, unlike the current POD-296SA.

Target designs that use only internal RAM and ROM may use the address and data bus
pins for low speed I/O. This is called either single-chip mode or Internal Addressing mode.
Pulling the EA pin high during RESET will configure the 8xC296 for internal addressing,
freeing the address and data bus pins for general purpose I/O. Even when in single-chip
mode, the pod still uses emulation RAM as a substitute for internal RAM and ROM in the
target controller, which requires the same pins being used for I/O on the target. In fact,
unlike a normal 8xC296, the address, data, and bus control pins on the special emulation
controller cannot be used for low speed I/O. This creates a conflict between single-chip

EMUL296-PC Chapter 5: Pod Boards

Copyright 1996 ICE Technology •• 90

target applications and emulation. The solution to this conflict is a Port Replacement Unit
that reconstructs the low speed I/O ports for the target. (External only controllers do not
need a port replacement unit.)

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 91

Chapter 6: POD-296-256-SA-50

Introduction

Warning: Do not install more than one jumper on EA16 (JP6). If you do, you are likely to
damage the target, the pod, or both.

This pod board contains an Intel 80C296 special emulation microcontroller chip suitable for
emulating the Intel 8xC296SA, an oscillator operating at either 16, 20, or 25 (50) MHz, 256
kilobytes of emulation RAM for instructions and/or data, circuits for driving the bus, two
PROMs, and two large FPGA chips.

Halt Reset Run User
JP31 JP32 JP30

A
LE

/T
_A

LE

P
2.

5/
H

O
LD

#

IN
S

T
/T

_I
N

S
T

JP24
JP25
JP26
JP27
JP28
JP29

M
em

or
y

M
ap

 S
el

ec
t

JP
40

Auto BW
Manual BW JP

5
JP

21
JP

17
JP

12

JP13

JP
14

RXD

RST

RDY

JP9
GND

EA16

INSTJP
6

X
JP

3

P
W

R

JP7 JP10T
A

R
G

E
T

/P
O

D

T
A

R
G

E
T

/P
O

D

Auto
Map

NOHAU CORP. POD-296SA REV C

Figure 52: POD-296-256-SA

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 92

JP31 JP32 JP30

A
LE

/T
_A

LE

P
2.

5/
H

O
LD

#

IN
S

T
/T

_I
N

S
T

JP24
JP25
JP26
JP27
JP28
JP29

M
em

or
y

M
ap

 S
el

ec
t

JP
40

Auto BW
Manual BW JP

5
JP

21
JP

17
JP

12

JP13

JP
14

RXD

RST

RDY

JP9
GND

EA16

INSTJP
6

X
JP

3

P
W

R

JP7 JP10T
A

R
G

E
T

/P
O

D

T
A

R
G

E
T

/P
O

D

Auto
Map

Figure 53. Enlargement of POD-296-256-SA Jumper Configuration

Dimensions

The pod board itself is 6.5 inches by 4 inches (16.6 cm. by 10.3 cm). The pod requires
between one and two inches (2.5 cm to 5 cm) of space above the target, depending upon
which adapter is being used to connect the pod to the target.

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 93

POD-296-256-SA The footprint dimensions for the pin pattern are shown in Figure 54. This
information enables the design of a board with a matching pin pattern, eliminating the need
for an adapter.

0.1 in.

0.3 in.

2.
2

in
.

56
 m

m

1 .81 in.
46 mm

Figure 54. Footprint Dimensions

POD-296-256-SA Emulation Memory

This pod comes with 256K bytes of high speed static RAM for emulating ROM or target
RAM. Controllers like the 8xC296SA, with 20 address bits, can address 1 megabyte. Support
has information about ordering a 1 megabyte pod. (See “Do You Have Enough
Emulator Memory?” on page 89).

Wait States

The emulator uses the number of wait states specified in the Emulator Hardware Config
dialog box. (or found in the CCBs. In addition, you may use the READY pin to increase the
number of wait states to any number. If the target board continuously holds the READY pin
low, the application will stop executing and the emulator may display one of several error
messages. (An oscilloscope trace of the READ or WRITE strobe will show the strobe signal
stuck low.) If the emulator hangs in this way, remove the READY jumper to isolate the
target READY signal from the emulator READY pin until your target works.

Note: Every time you have the emulator reset the controller, the emulator software writes $0000
to addresses $1F40 and $1F42. This feature uses chip select 0 to activate emulation RAM
throughout the entire address range and allows you to load code. Typically your start-up
code will reprogram the chip select registers and your application will then run normally.

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 94

Breakpoints

All breakpoints (hardware and software) should be enabled and disabled by clicking on the
line number in either the source window or the program window. If you use the hardware
breakpoint dialog box, make sure you put the breakpoint at the first byte of instruction.
Hardware breakpoints on protected instructions3 will lock up the 80C296SA emulation
chip..

POD-296-256-SA Headers

In Figure 52, all the headers are shown with their jumpers in the factory default positions.
Figure 55 shows some of these headers in detail.

When shipped from the factory, all headers have jumpers located for stand-alone operation
(without a target). When you do connect this pod to a target, be sure to examine all
jumpers and make sure that they are all correctly placed. Use the descriptions below as a
guide to jumper placement.

POD-296-256-SA Clock Headers: JP7 & JP10
These jumpers are located on either side of the oscillator on the pod. They are used to
select whether the 80C296SA special emulation chip will use the clock from the target or
from the pod. Both jumpers should be moved to the same position (TARGET or POD). If
the target has an oscillator at a different frequency than the one on the pod, it is
recommended that these jumpers be in the TARGET locations.

POD-296-256-SA PWR Header: XJP3
This jumper should be removed when connected to the target. It is intended to supply
power to the special emulation chip when running the pod without a target. The pod can
supply up to 100 mA to the target but it is recommended that this jumper be removed when
the target has its own power supply or when the power requirements of the target exceed
0.1 amps.

POD-296-256-SA RXD Header: JP13
If your target outputs debugging information on the serial port, you may wish to connect an
RS232 device like a terminal or a PC to header J1. This pod includes a MAX232 chip to
convert the signal levels from RS232 to TTL levels. Whether or not you connect the RxD
pin on J1 to an RS232 device, the MAX232 chip will drive the serial port input pin on the
controller. To keep the MAX232 chip from driving the serial input pin on the controller,
remove the jumper on the RXD header. To allow the MAX232 chip to drive the serial port
input pin, place a jumper on the header.

3 The following are considered to be protected instructions: PUSHF, POPF, PUSHA, POPA, DI, DI, SIGN
(0xFE), and the first instruction of an interrupt service routine.

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 95

POD-296-256-SA RST Header: JP14
Occasionally, a target may contain an external device designed to reset the controller by
pulling the RST pin low. During debugging, that may be inconvenient. The signal
from the target RST pin passes through the RST header. Removing the RST jumper will
prevent the external device from resetting the pod controller.

JP
24

JP
25

JP
26

JP
27

JP
28

JP
29

Memory Map Select

JP40

A
uto B

W
M

anual B
W

JP5JP21JP17JP12

JP
13

JP14

R
X

D

R
S

T

R
D

Y

JP
9

G
N

D

E
A

16

IN
S

T

JP6

A
uto

M
ap

Figure 55: Pod Configuration Headers

POD-296-256-SA Auto/Manual BW Header - JP5
This jumper should remain in the default (AUTO-BW) position. (This jumper was previously
used for the 80C296 NU emulation chip.)

POD-296-256-SA Auto Map Header: JP40
This jumper, when in place, currently maps all memory to the pod. This is sometimes
convenient when running without a target. Normally, this jumper should be removed so
that all memory mapping is done using the chip selects. On previous pods (196NP/NU)
this jumper would allow mapping to be done with software. Because of the larger
addressability of the 296SA and the high speeds, software mapping is not an option. All
mapping should be done with this jumper removed and corresponding jumpers should be
place on JP24-JP29. Installing JP40 will map all memory to the pod.

POD-296-256-SA JP6, JP12, JP17, & JP21 (EA16-EA19) Headers
Because the upper address lines (A16-A19) can be used either as I/O pins or as address
lines, we need to determine whether or not these pins should be directed to pod memory
and whether or not they should be sampled in the trace. If any of these pins are not
configured as extended address lines, the corresponding jumper should be placed in the
GND position. All four jumpers should reflect the configuration of the EPORT registers. It
is also important that the Hardware Config. Menu match these jumper settings or the
software could hang. JP6 also has a third position labeled INST. This is not supported
and there should never be a jumper in this position.

Symbols in the Trace Window
Right out of reset, the 80C296SA looks for the start-up code and CCB values starting at FF
2018. Many applications will compile and link code (and all code symbols) to page FF 0000
and up. If that application also maps global variables to address 0 and then uses some of

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 96

the higher address pins for low speed I/O, the trace disassembly will be unable to
associate the trace buffer addresses to the correct code symbols. (Some of the EA1x
jumpers will need to be in the GND position.) If this is true for your application, there is a
work-around you may want to consider.

Under these circumstances, to correctly associate addresses with symbols, the trace board
needs to receive an address that is different than the one appearing on the address pins. If
you run a wire from the EA1x side of the highest TRA1x header not carrying an I/O signal
to the center pins of the higher address headers, the trace board will get correct address
for code space and will likely still get correct addresses for data space bus cycles. A picture
and an example will make it much more clear.

M
_I

N
S

E
A

17
\G

N
D

E
A

18
\G

N
D

E
A

19
\G

N
D

JP
12

\T
R

A
17

JP
17

\T
R

A
18

JP
21

\T
R

A
19

E
A

16

G
N

D

JP
6/

T
R

A
16

Figure 56: Wiring for 256k by 8 RAM chips

The application in Figure 56 uses the two highest address pins for low speed I/O. The 256k
by 8 RAM chips for holding data need 18 address bits: bit 0 through bit 17. Again, the
instructions are mapped to the top of the address range: from FF 0000 to FF FFFF hex.
This wiring ensures that when address pin 17 is high, the trace board will receive high
signals for TRA17, TRA18, and TRA19. If this example application has global data symbols
between 20000 hex to 40000 hex, they will not be identified correctly in the Trace window.
This wiring will have no effect on how the trace displays global symbols below 20000 hex
or local variables found on the stack.

POD-296-256-SA JP30-JP32 (P2.5, ALE, INST) Header
These jumpers should all be moved together depending upon how P2.5 is configured. If
P2.5 is configured as standard I/O, these jumpers should be in default position 1&2
(P2.5,Inst,Ale). However, if P2.5 is configured as HOLD#, these jumpers should be in
position 2&3 (HOLD,T_Inst,T_Ale) -- (used to tristate these pins during hold).

POD-296-256-SA RDY Header: JP9
Similar to the RST jumper, the RDY jumper passes the READY signal from the target to the
controller. Since the controller is also responsible for communicating information to the
Windows software, if Ready suspends the operation of the controller, it will also suspend
the communication between the pod and the Windows software. To get past this problem,
the RDY jumper may be removed to continue operation of the controller if a problem should
occur.

POD-296-256-SA Memory Mapping Headers: JP24 - JP29
A jumper block on one or more of these headers will pass the corresponding chip select
signal to a PAL to create our mapping signal. One side of the header is connected to a

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 97

chip select signal. The other side has a pull-up resistor and is fed to the PAL. The PAL
ANDs all of these signals together such that a logic zero on any input will map that cycle to
the pod. Thus, for each chip select that has a jumper block installed, the address range of
that chip select will be mapped to the pod. With no jumper blocks installed, all memory
access will be directed to the target. A typical configuration would be to have a jumper on
CS0 (JP24) only so that the code is mapped to the pod memory and all other memory
access will be directed to the target. This should be in addition to JP40 being removed.

Note: Software Memory mapping is NOT supported by the 296SA. The memory mapping dialog
box should not be used.

Mapping Memory Using Chip Selects
While debugging your hardware and software, you typically want to use the RAM on your
target for data and replace your EPROM with emulation RAM so you can reload and run
your application quickly.

RESISTOR 7 PACK

V CC

FROM SOFTWARE
MEMORY MAPPING

JUMPERS

 CS for ON-POD MEMORY

EMULATION
RAM ON POD

JP24
JP25
JP26

JP27

JP29
JP28

P3.0/CS0
P3.1/CS1
P3.2/CS2

P3.3/CS3
P3.4/CS4
P3.5/CS5

8xC296SA
RD

WRL

WRH

ICE_READ

ICE_WRL

ICE_WRH

USER_READ

USER_WRL

FAST244

QUICK
SWITCH USER_WRH

TO TARGET

INTEL

JP40

Figure 57: Schematic for Memory Mapping

The essence to using chip selects to map memory is to map all addresses to the target and
then use a chip select signal (or your target PAL output) to override the software mapping
and re-map an address range back to the emulation memory on the pod. This signal can
be either a chip select signal from the 8xC296SA controller, or it can be the output from
some address decoding logic.

To use a chip select signal, place a jumper on the corresponding header. JP24 through
JP29 pass CS0 through CS5 respectively. When any jumpered chip select signal is active
(low) bus cycles will be directed to the pod.

To use the output from a PAL on your target, run a wire from the PAL to the JP24 header,
to the pin closest to the edge of the pod. When that pin is pulled low by the PAL, bus
cycles will be directed to the pod.

EMUL296-PC Chapter 6: POD-296-256-SA-50

Copyright 1996 ICE Technology •• 98

Note: The read-strobe and write-strobe signals are gated so that there can never be a bus
collision between emulation RAM and target memory devices.

Note: Inserting jumper JP40 will map all memory to the pod for running the emulator without a
target.

Warning: Mapping all RAM addresses to a fully functioning target will almost never cause any
new problems. But, the emulator cannot function normally when stack RAM
addresses are mapped to non-functioning RAM.

Note: When using an EMUL296 trace board, the trace port address should match the emulator
port address in the EMUL296.INI file.

Note: Because of a limitation in the debug capabilities of the current 80C296SA emulation chip,
we will not support non-prioritized mode (PRIOR_EN = 0). Normal operation requires that
the user’s code set the PRIOR_EN bit in the NMI_PEND register and that no interrupts are
allowed prior to this occurring. If this is not done, the emulator will not be able to run
monitor code without being interrupted, which will result in communication errors.

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 99

Chapter 7: Accessories

Overview

To support EMUL296™-PC, we provide hardware accessories and supports several
compilers. Most of the hardware accessories are adapters for connecting the various pods
to a wide variety of targets. The compilers described at the end of this chapter are for the
microcontrollers with both 16 bit and 20 bit addressing. This list of accessories was
complete as of the publication date, but new accessories and support for new compilers
are added routinely. Contact us for current prices and a complete list of
adapters and compilers for EMUL296™-PC.

This chapter contains descriptions of adapters for PLCC parts, pin grid array parts, and
clips for surface mount applications. After that the Port Replacement Units are described.
Following those are the miscellaneous hardware accessories that make the adapters even
more adaptable to unusual target configurations. Finally, the compilers are described in
general terms; outlining issues pertinent to the EMUL296™-PC debugging environment.

The most effective way to connect the pod to the target is to design headers on your target
that match the pins on the underside of the pod. Doing this will avoid the cost, capacitance,
and extra contacts associated with each kind of adapter. If you have the space on your
target board, we highly recommend adding these sockets to your target. If your target does
not have room, all of the following adapters are equally effective and easy to use.

Surface-mount QFP adapters - SA Family

The following diagrams show the proper adapter orientation for the microcontrollers listed.

Adapter Circuit Board
Bond-Out on POD

8xC296SA-QFP,
8xC296SA-SQFP

Orientation of
adapter PCB
(usually green)

Orientation of
ceramic chip on
top of POD board

Orientation of
customer chip

Figure 58: QFP/SQFP Adapter Orientation

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 100

Target board

1.19 in.
30 mm.9 in.

23 mm

Adapter Disassembled
 2.09 in.
53 mm.

Adapter
Base

2.6 in.
66 mm.

1

48

2.2 in
56 mm.

J3

J1
D

J1C

J1B

J1A
Nohau Corp. 1994

J2

Figure 59: Dimensions for EMUL296-PC/SA-ADP100-QFP/ET

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 101

Target board

1.14 in.
28 mm.79 in.

20 mm

 2.09 in.
53 mm.

2.6 in.
66 mm.

1

48

2.2 in
56 mm.

J3
J1

D
J1C

J1B
J1A

Nohau Corp. 1994

J2

Figure 60: Dimensions for EMUL296-PC/SA-ADP100-QFP/EDI

The 8xC296SAA comes in two Quad Flat Pack (or QFP) packages. Both include 100 pins.
One is square and one is rectangular. Figure 60 shows the dimensions for the NP-
ADP100-QFP/EDI part. Dimensions for the other 8xC296SA adapters: NP-ADP-QFP/ET,
NP-ADP-SQFP/EDI, and NP-ADP100-SQFP/ET are very similar in appearance and size.

The most significant difference between the EDI adapters and the ET adapters is the
appearance of the adapter base that solders onto the target board. The EDI solder-in
adapter base is shown in . The base is short and has short pins. A typical solder-in QFP
adapter base for the ET parts is shown in Figure 109. Most of the height in the ET adapter
is in the adapter base. Assembled, the two kinds of adapters are about the same height.

Figure 61: Typical Emulation Technology QFP adapter Base

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 102

With all the solder-in adapters, the base plugs into the rest of the adapter both to facilitate
soldering, and to let you separate the pod from the target without separating the pod from
the adapter. Once the target, adapter, and pod are assembled, you may find it easier to
separate the two halves of the adapter than to separate the pod from the adapter. In either
case, use care when disconnecting the pod from the target to avoid damaging any of the
components.

 POD Board

 Adapter

Target

100 square
QFP footprint

Processors:
8xC296SA-SQFP
(100SQFP Devices)

Notes:

Adapter, 100 pin, square QFP for 296SA. Solders
to user's board. The bottom subassembly portion is
made by EDI.

 Solder Down
 Base
(EDI#100QFS20-SD)

Figure 62: EMUL-PC/NP/Sx-ADP100-QFP/EDI Adapter Orientation in Detail

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 103

 POD Board

 Adapter

Target

100 rectangle
QFP footprint

Processors:
8xC296SA-QFP
(100QFP Devices)

Notes:

Adapter, 100 pin, rectangular QFP for 296SA. Solders
to user's board. The bottom subassembly portion is made
by Emulation Technology.

 Solder Down
 Base
(EPP-100QF06-SM)

Figure 63: EMUL-PC/NP/Sx-ADP100-QFP/ET Adapter Orientation in Detail

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 104

Surface-mount SQFP Adapters

The following diagrams show the proper adapter orientation for the microcontrollers listed.

Adapter Circuit Board
Bond-Out on POD

8xC296SA-QFP,
8xC296SA-SQFP

Orientation of
adapter PCB
(usually green)

Orientation of
ceramic chip on
top of POD board

Orientation of
customer chip

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 105

 POD Board

 Adapter

Target

100 square
QFP footprint

Processors:
8xC296SA-SQFP
(100SQFP Devices)

Notes:

Adapter, 100 pin, square QFP for 296SA. Solders
to user's board. The bottom subassembly portion is
made by Emulation Technology.

 Solder Down
 Base
(EPP-100QF49-SM)

Figure 64: EMUL-PC/NP/Sx-ADP100-SQFP/ET Orientation

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 106

 POD Board

 Adapter

Target

100 square
QFP footprint

Processors:
8xC296SA-SQFP
(100SQFP Devices)

Notes:

Adapter, 100 pin, square QFP for 296SA. Solders
to user's board. The bottom subassembly portion is
made by EDI.

 Solder Down
 Base
(EDI#100QFS20-SD)

Figure 65: EMUL-PC/NP/Sx-ADP100-SQFP/EDI Adapter Orientation in Detail

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 107

 POD Board

 Adapter

Target

100 square
QFP footprint

Processors:
8xC296SA-SQFP
(100SQFP Devices)

Notes:

Adapter, 100 pin, square QFP for 296SA. Solders
to user's board. The bottom subassembly portion is
made by Emulation Technology.

 Solder Down
 Base
(EPP-100QF49-SM)

Figure 66: EMUL-PC/NP/Sx-ADP100-SQFP/ET Adapter Orientation in Detail

EMUL296-PC Chapter 7: Accessories

Copyright 1996 ICE Technology •• 108

Compilers

BSO/Tasking

Assembler notes
To do Source Level Debugging, add two switches when assembling your code: debug and
source.

Note: This applies only if you have version 4.0, revision 3 or later of the BSO/Tasking assembler.
Previous versions did not support this feature.

A typical command line follows:

asm296 cstart.asm md(sa) farcode debug source

Set all other switches to match your target. For more information about other assembler
settings, refer to the BSO/Tasking manual.

The example files on the release disk include a file called CSTART.ASM. For simplicity,
please use that file instead of any of the start-up example files shipped with the BSO
compiler when compiling the examples.

Note: To get line number/source information from BSO/Tasking version 4.0, use the SOURCE
switch.

Compiler Notes
Like the assembler, the debug switch produces all the symbols needed by the debugger
and puts them in the unlinked object file. Set all other switches to match your target. For
more information about other compiler command line settings, refer to the manual from
BSO/Tasking.

IAR Systems Software, Inc.

Compiler Notes
Like the assembler, the debug switch produces all the symbols needed by the debugger
and puts them in the unlinked object file. Set all other switches to match your target. For
more information about other compiler command line settings, refer to the manual from IAR
Systems Software, Inc..

EMUL296-PC Chapter 8: Troubleshooting

Copyright 1996 ICE Technology •• 109

Chapter 8: Troubleshooting

Troubleshooting Overview

If you have emulator trouble you may contact customer support at support@icetech.com
If you do, the engineer will likely lead you through the following steps to test for the
most common mistakes. To save time, you may also test for the most common reasons
that the emulator is not working the way you want.

The items to check for below are in order. Start at number 1 and continue until either the
emulator works or you have reached the end of the list. Each item is a short version of a
description from earlier in this manual. Each item has at least one page number where
more details can be found.

Note: We suggest that you remove the pod from the target when you do the
following steps.

Step 1: Board I/O Addresses

Confirm that the I/O address set in the jumpers on the emulator and trace boards both
agree with the software settings found in their respective configuration dialog boxes. (For
more information, see page 73.)

Step 2: .INI Editor

The Windows software is used for all EMUL296™-PC products. The type of target
processor in the software configuration must agree with the type of pod you are using. If
not, you may see a “Pod Communication Failed” error message. To ensure that you do not
get this error, we include a utility that you probably want to run when you first install
the emulator, and possibly again when you change your pod type. This utility is called
INI296. (You can also run this utility any time you want to check the values in the
initialization file.)

To invoke INI296, double click on the icon in the NOHAU program group labeled INI296. If
the EMUL296.INI settings are not self-consistent, you will see a warning message,
otherwise you will see the window shown in Figure 67.

To correctly configure your software to match your hardware, start by clicking on the button
that matches your pod type. If your pod should not address memory above 64K, put a
check mark in the PC < 64K box. If you are using memory above 64K, leave the box
unchecked and make sure that the jumpers TRA16 through TRA19 match the field labeled
Address from A0 to ... For example: if TRA16 is in the EA16 position but the rest are in the
GND position, click on the button labeled A16. If all the TRA headers are in the EA
position, click on the button labeled A19. (For more information on INI296, see page 18.)

EMUL296-PC Chapter 8: Troubleshooting

Copyright 1996 ICE Technology •• 110

Figure 67: Choosing a target processor with INI296

After you have set the Emulator Port: and Trace Port: fields, click on the OK button or
press <Enter>. The Emulator Port: field must agree with the values you set in the J2
jumper on the emulator board, as described in the section, "Setting the I/O address
jumpers -- J2" on page 70. Likewise, the Trace Port: field must agree with the way you set
the address jumpers on the emulator board.

Step 3: PWR and XTAL jumpers

If there is a power supply on the target, remove the PWR jumper from the pod (for more
information, see page 71).

If the crystal or oscillator on the target is running at a different frequency than the one on
the pod board, move the XTAL jumpers to the target position.

For more information, see the section in the Pod chapter that describes the kind of pod you
have.

Step 4: I/O On Addresses Pins

Most 8xC296 parts use 16 address bits. In those parts that support more address bits, the
target can use from 0 to 4 of the extra address bits for I/O instead. The table below shows,
for each combination of address pins used for addressing, how to set the jumpers shown in
the table. Make sure the jumpers on your pod match the settings in the row that applies to
your target. (For more information, see page 70.)

Bits used for
Addressing

TRA16 TRA17 TRA18 TRA19

A0 - A15 GND GND GND GND

A0 - A16 EA16 GND GND GND

A0 - A17 EA16 EA17 GND GND

A0 - A18 EA16 EA17 EA18 GND

A0 - A19 EA16 EA17 EA18 EA19

EMUL296-PC Chapter 8: Troubleshooting

Copyright 1996 ICE Technology •• 111

Step 5: Chip Configuration Bytes (CCB's)

The CCB's that you specify in the hardware configuration menu must match what the
microcontroller reads from location 2018 at reset. For example, if you have mapped 2018
to a target with eprom that contains CCB's specifying 8 bit mode while your hardware
configuration menu specifies 16 bit mode, you will surely run into trouble. (For more
information, see page 25.)

Note: CCB's on 80C296 pods running in "big mode" (i.e., PC>64k) are fetched at
FF2018.

Step 6: The Stack Pointer

The Stack Pointer must point to valid even memory location at all times. The emulator
needs either 2 bytes or 4 bytes of temporary storage on the stack. (SP should have a value
> 0x50). (For more information, see page 87.)

Step 7: Interrupt Vectors

Support for software breakpoints requires specific values for certain interrupt vectors.
When troubleshooting target systems that use 16 bits of addressing, confirm that the
following address have the following values:

Address: 0x0012 & 0x0014 0x2010 0x2012

Value: 0x0000 0x0012 0x0012

When troubleshooting a target design that uses a processor with 20 bits of addressing like
the 8xC296SA, add an address offset of 0xFF0000 to each of the above addresses to
locate the interrupt vectors:

Address: 0xF0012 & 0x0014 0xF2010 0xF2012

Value: 0x0000 0x0012 0x0012

If you map these addresses to the target ROM, be sure your ROM contains these values at
those addresses. If it does not, software breakpoints will not work.

Step 8: Sample User Program

If you telephone the technical support team, you will probably be asked to do the
following to enter a sample user program:

1. Click in the Program Window

2. Hit <Ctrl>-A

3. Type in address 2080

EMUL296-PC Chapter 8: Troubleshooting

Copyright 1996 ICE Technology •• 112

4. Hit <Enter>

5. Type: NOP <Enter>

NOP <Enter>

LJMP 2080 <Enter>

6. Click on the GO button in the tool bar.

7. Click on BREAK.

8. Make a note of software revision.

9. Make a note of compiler revision.

10. Make a note of serial numbers of boards.

EMUL296-PC INDEX

Copyright 1996 ICE Technology •• 113

INDEX

.

.INI Editor · 2

8

80C296 · 2

A

Accessories · 2
Adapters

Surface-mount QFP, SA family · 2
Surface-mount SQFP, SA family · 2

Add .. · 2
Add a watch point .. · 2
Address Range · 2
Address space .. · 2
Address.. · 2
Animate .. · 2
Arrange Icons · 2
At .. · 2

B

Bargraph · 2
Benchmarking

Using Timestamp · 2
Bin

Adding a · 2
Block move.. · 2
Break

Emulation · 2
On internal access .. · 2

Break Emulation? Box · 2
Break now! · 2
Break Two Emulators Simultaneously · 2
Breakpoints

Hardware · 2
BSO/Tasking · 2
Bus Cycle Order · 2
Bus Width · 2

C

C call stack .. · 2
Call stack .. · 2
Cascade windows · 2

Child Windows · 2
Chip Configuration Bytes · 2
Close · 2
Color .. · 2
Communication Rate Jumper · 2
Compilers · 2
Confidence Test · 2
Convert cycles to time · 2
Copy to clipboard · 2

D

DataDisplay as.. · 2
Default CPU symbols · 2
Delete All · 2
Dialog Boxes · 2
Disable all · 2
Display as.. · 2
Duplicate Resources · 2
Dynamic Data Exchange · 2

E

Edit
Trigger Conditions · 2

Edit .. · 2
EMUL/LC-ISA · 2
EMUL296-PC/SA-ADP100-QFP/EDI

Dimensions · 2
EMUL296-PC/SA-ADP100-QFP/ET

Dimensions · 2
Emulator

Board · 2
Detailed Installation Instructions · 2
Hardware Configuration · 2
Macro User Guide · 2
Memory · 2

Emulator Hardware .. · 2
EMUL-PC/NP/Sx-ADP100-QFP/EDI

Orientation · 2
EMUL-PC/NP/Sx-ADP100-QFP/ET

Orientation · 2
EMUL-PC/NP/Sx-ADP100-SQFP/EDI · 2
EMUL-PC/NP/Sx-ADP100-SQFP/ET · 2

Orientation · 2
Enable Code Space Limits · 2
Evaluate .. · 2
Exit · 2
Extend Recording · 2
External Inputs and Controls · 2

EMUL296-PC INDEX

Copyright 1996 ICE Technology •• 114

F

Fast Break Write · 2
Fast_Br_W .. · 2
Fill.. · 2
Filter Mode: Normal · 2
Filter Mode: Window · 2
Find Frame number .. · 2
Find Trig point · 2
Full Reset · 2
Function · 2

G

Go · 2
FOREVER · 2
To .. · 2
To cursor · 2
To return address · 2

H

Hardware breakpoints .. · 2
Hardware breaks only · 2
Headers

Auto Map · 2
Auto/Manual BW · 2
Clock · 2
JP30-JP32 · 2
JP6, JP12, JP17 & JP21 · 2
Memory Mapping · 2
PWR · 2
RDY · 2
RST · 2
RXD · 2

Help Line · 2

I

I/O Addresses · 2
I/O On Addresses Pins · 2
IAR Systems Software, Inc. · 2
Indicator Lights · 2
INI296 · 2
In-line assembler · 2
Inspect .. · 2
Installation Instructions, Quick · 2
Installing

Emulator · 2
Pod · 2
Software · 2
Trace Board · 2

Internal Addressing or Single Chip Mode · 2
Interrupt Vectors · 2

L

Last trig event repeat count · 2
Length field · 2
Load

Code · 2
Default symbols · 2
EEPROM · 2

Load and execute a program · 2

M

Macro
Constants · 2
Example · 2
Global Variables · 2
Nohau Subroutines · 2
Procedure for writing · 2
Setup · 2
Subroutine Reference · 2

Macro System · 2
Manual Conventions · 2
Mapping

Memory · 2
Memory Using Chip Selects · 2

Memory
Coverage · 2
Coverage Report, Detailed · 2
Coverage Report, Summary · 2
Mapping · 2

Memory Coverage .. · 2
Menus · 2

Breakpoints · 2
Config · 2
Data · 2
File · 2
Help · 2
Program · 2
Register · 2
Run · 2
ShadowRam · 2
Source · 2
Stack · 2
Trace · 2
View/Edit · 2
Window · 2

Microsoft Visual Basic · 2
Miscellaneous .. · 2
Miscellaneous bits · 2
Miscellaneous Configuration · 2
Miscellaneous Setup · 2
Module · 2
Multiple Document Interface Standard · 2

EMUL296-PC INDEX

Copyright 1996 ICE Technology •• 115

N

Next window · 2

O

Open
A new data window · 2
A new program window · 2
A new register window · 2
A new shadow ram window · 2
A new source code window · 2
A new trace window · 2
A Watch window · 2

Origin (at program counter) · 2
Original Address · 2

P

Parameters in Hex · 2
Paths

Setting · 2
Paths .. · 2
Performance Analysis · 2
Pipeline Effects · 2
Pod

Breakpoints · 2
Configuration Requirements · 2
Emulation Memory · 2
Headers · 2

Pod Boards · 2
Pod Dimensions · 2
POD-296-256-SA-50 · 2
Post trigger samples · 2
Power Supply to Pod / Target · 2
PP Analyzer · 2
Preferences · 2
Programming

Algorithms · 2
External Flash Memory · 2
Options · 2

Project name .. · 2
Projects · 2

Creating · 2
PWR and XTAL jumpers · 2
PWR Header -- JP2 · 2

Q

QFP/SQFP
Adapter Orientation · 2

Quick Start Instructions · 2

R

RAM value, change · 2
Refresh · 2
Relative timestamp · 2
Remove .. · 2
Remove Symbols · 2
Reset

and Go · 2
Chip · 2

Reset vs. Full Reset · 2

S

Sample User Program · 2
Save

Trace as text .. · 2
Save code as .. · 2
Search

Address .. · 2
Next Address · 2
Previous Address · 2

Search next · 2
Search previous · 2
Search.. · 2
Set new PC value at cursor · 2
Setting

I/O address jumpers -- J1 · 2
Target Communication Rate -- Header JP1 · 2

Setup .. · 2
Setup Instructions, Quick · 2
Show

Misc. data · 2
Timestamp · 2

Show function · 2
Show load info .. · 2
Software breakpoint

Delete · 2
Make inactive · 2
Setting · 2

Software Configuration, Initial · 2
Software Installation Instructions, Detailed · 2
Software, Configuring · 2
Stack Pointer · 2
Step into · 2
Step over · 2
Symbols in the Trace Window · 2
Synchronize program window · 2
System Requirements · 2

T

T = 0 at Cursor · 2
Tile windows · 2
Toggle · 2
Toggle breakpoint · 2

EMUL296-PC INDEX

Copyright 1996 ICE Technology •• 116

Toggle help line · 2
Toggle trace (stop/run) · 2
Tool Bar · 2
Trace

Board Installed · 2
Board, Detailed Installation Instructions · 2
Board, Introduction · 2
Clock Rate · 2
Config Menu · 2
I/O Address field · 2
Input Pins · 2
Memory · 2
Setup .. · 2
Setup Dialog Box · 2
Triggers · 2

Trace .. · 2
Tracing

Introduction to · 2
Triggers · 2
Troubleshooting · 2

U

User defined symbols · 2

V

View assembly code · 2

View source window · 2

W

Wait States · 2
Window

Colors · 2
Memory Coverage · 2
PPA Control · 2
Source · 2

Windows
Data and ShadowRam · 2
Evaluate · 2
Inspect · 2
Other · 2
Program · 2
Register · 2
RTXC · 2
Source · 2
Stack · 2
Trace · 2
Watch · 2

Windows API · 2

Z

Zoom · 2

