

EMUL51XA™-PC

Administrator
New Stamp

NOHAU EMUL51XA

User Guide

Copyright ICE Technology

 www.icetech.com

Tel: 650.375.0409

Fax: 650.375.8666

 http://www.icetech.com

All rights reserved worldwide

 Fouth Edition

Joe Pennese
Text Box
 Email: sales@icetech.com
 Email: support@icetech.com

Copyright © ICE Technology

Warranty Information

ICE Technology makes no other warranties, express or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. In no event will ICE Technology be liable for
consequential damages.

 Emulator hardware is warranted for 90 days of purchase excepting any electronic

 or mechanical damage as a result of exceeding electronic or mechanical tolerances.

A

Joe Pennese
Text Box
 - Warning -
Prevent damage to the emulator or your project device.
Never turn the emulator off while connected to a powered unit under test.
Never plug the emulator into a unit under test that is energized.

EMUL51XA™-PC Table of Contents

Copyright © 1998 ICE Technology i

Table of Contents

INTRODUCING EMUL51XA-PC 1

How to use this manual 1

Manual Conventions 2

QUICK INSTALLATION INSTRUCTIONS 3
System Requirements 3
Quick Setup Instructions 3

Installing the Emulator 3

Installing the Piggyback Trace Board (If Used) 4

Installing the Pod 4

Installing the EMUL51XA-PC software 4

Initial Software Configuration 5

Confidence Test 6

CHAPTER 1: SOFTWARE USER INTERFACE 9

Detailed Installation Instructions 9

Configuring the Software 9
Projects 10
Setting the Paths.. 11
Mapping memory 13
Emulator Hardware Configuration 14
Miscellaneous Configuration 16
Dynamic Data Exchange 16

Reset vs. Full Reset 18

Window Colors 18

Performance Analysis (PPA) 19

Memory Coverage 22

Menus 27
File Menu 27
Remove Symbols 28
Show Load Info 28
Preferences 29

Table of Contents EMUL51XA™-PC

Copyright © ICE Technology

Exit 29
View/Edit Menu 29
Run Menu 30
Breakpoints Menu 31
Config Menu 32
Program Menu 34
Source Menu 34
Data Menu 35
Register Menu 35
Trace Menu 36
Stack Menu 36
Watch Menu 36
Window Menu 36
Help Menu 37
Dialog Boxes 37
Child Windows 38
Register Windows 38
Data Windows 39
Special Registers 40
Custom Display Format 41
Program Windows 41
In-line Assembler 42
Source Windows 42
Trace Window 44
Other Windows 44
Evaluate Window 45
Stack Window 45

Tool Bar 46

Help Line 46

CHAPTER 2: EMULATOR MACRO USER GUIDE 47

Introduction 47
General description of the emulator macro setup 47
Visual Basic Supplemental User Guide 47
Procedure for writing a macro 48
Subroutine Reference 53
Nohau Subroutines 54

CHAPTER 3: EMULATOR BOARD 57

EMUL/LC-ISA Emulator Board 57

Detailed Installation Instructions 58
Setting the I/O address jumpers—J1 58
Setting the Target Communication Rate – Header JP1 58
Communication Rate Jumper 59
The PWR Header – JP2 59
Power Supply to Pod/Target 59

EMUL51XA™-PC Table of Contents

Copyright © 1998 ICE Technology iii

CHAPTER 4: INTERNAL/EXTERNAL DATA TRACE BOARD 61

Detailed Installation Instructions 61
Trace Board Power Jumper 61
External Inputs and Controls 62

Introduction to Tracing 63
Trace Window 64
Trace Menu 65
Trace Setup Dialog Box 72

CHAPTER 5: POD BOARDS 83

Features Common to All Pods 83
How It Works 83
Indicator Lights 83
Trace Input Pins 83
Duplicate Resources 84

CHAPTER 6: POD-51XA/G3/I 87

Introduction 87

Dimensions 88

Emulation Memory 88

Headers 89

Features and Limitations 92
Emulation Memory 92
Software breakpoints 92
Hardware breakpoints 92
Operation frequency 92
External Bus Signal Timing Configuration 93
Mapping 93
Trace 93
Shadow Memory 93
Speed Limit 94

CHAPTER 7: POD-51XA/G3/E 95

Introduction 95

Dimensions 96

Emulation Memory 96

Headers 97

Table of Contents EMUL51XA™-PC

Copyright © ICE Technology

Features and Limitations 100
Emulation Memory 100
Software breakpoints 100
Hardware breakpoints 100
Operation frequency 100
External Bus Signal Timing Configuration 101
Mapping 101
Trace 101
Shadow Memory 101
Wait State Input / WAITD Bit 102
Speed Limit 102

CHAPTER 8: POD-51XA/G3/IE 105

Introduction 105

Dimensions 107

Internal / External Trace Board (IETR) Users 107

Emulation Memory 108

Headers 108
Clock Headers—JP1 and JP2 109

EXT Mode Header—JP20 109
PC–PWR Header—JP14 110
POD–PWR Header—JP15 110
Target On Header—JP28 110
5 V and 3 V Header—JP16 111
RXD Headers—JP11 and JP12 111
RS232 Headers—J1 and J2 111
Trace Header—JP13 111
Reset Header—JP18 111
TARGET / POD Wait Header—JP23 111
I/O Port Header—JP19 112
Target BW Header—JP21 and 8-Bit Header—JP27 112
Code Header—JP26 and Overlay #Header—JP22 112
12 / 16-Bit and 12-Bit Headers—JP24 and JP25 113
A12 – A19 Headers—JP3 – JP10 113

Features and Limitations 114
Emulation Memory 114
Software Breakpoints 114
Hardware Breakpoints 114
Fast Break Write 114
Data / Address Bus Configurations 115
Operating Frequency 115
Mapping Capabilities 116
Trace 116
Shadow Memory 116

EMUL51XA™-PC Table of Contents

Copyright © ICE Technology v

CHAPTER 9: POD-51XA/S3/IE 117

Introduction 117

Dimensions 119

Internal / External Trace Board (IETR) Installation 119

Emulation Memory 120

Headers 120
Clock Headers—JP1 and JP2 120
EXT Mode Header—JP20 121
PC–PWR Header—JP14 122
POD–PWR Header—JP15 122
Target On Header—JP28 122
5 V and 3 V Header—JP16 122
RS232 Headers—J1 and J2 122
Trace Header—JP13 123
Reset Header—JP18 123
TARGET / POD Wait Header—JP23 123
I/O Port Header—JP19 123
Target BW Header—JP21 and 8-Bit Header—JP27 123
Code Header—JP26 and Overlay #Header—JP22 124
12 / 16-Bit and 12-Bit Headers—JP24 and JP25 124
A12 – A23 Headers—JP3 – JP10 and JP29 – JP32 125

Features and Limitations 125
Emulation Memory 126
Software Breakpoints 126
Hardware Breakpoints 126
Fast Break Write 126
Data / Address Bus Configurations 127
Operating Frequency 127
Mapping Capabilities 128
Trace 128
Shadow Memory 128

CHAPTER 10: SOFTWARE SUPPORT 129

Compilers 129
HI-TECH HPDXA 129
HIWARE / Archimedes 130
Tasking 130

CHAPTER 11: TROUBLESHOOTING 130

Overview 130
Pod Problems 131
Trace Problems 133

Table of Contents EMUL51XA™-PC

Copyright © ICE Technology

Summary 134

CHAPTER 12: TUTORIAL 135
Hardware Issues 135
Software Issues 141

EMUL51XA™-PC Introducing EMUL51XA-PC

Copyright © ICE Technology 1

Introducing EMUL51XA-PC

The EMUL51XA-PC is a personal computer-based emulator for the Philips’
80C51XA family of microcontrollers. The EMUL51XA-PC consists of an
emulator board that "plugs in" directly to the PC, or is an external high-speed
parallel box; a five-foot-long (1.5 m) twisted-pair ribbon cable; various pod
boards and an optional tracing board. The EMUL51XA-PC design supports all
Philips microcontrollers that are based on the 80C51XA core.

The EMUL51XA-PC software is a Microsoft Windows 3.x/’95/NT application. It
follows the MS Windows Multiple Document Interface Standard. That means it
has the same look and feel as applications produced by Microsoft for MS
Windows.

The EMUL51XA-PC user interface is consistent with most other MS Windows
applications and includes dynamically changing menus, moveable and
scrollable "child" windows, function-key shortcuts for menu items, and context-
sensitive help. Anyone familiar with MS Windows applications will be able to use
EMUL51XA-PC with little or no other assistance. EMUL51XA-PC also supports
the MS Windows Dynamic Data Exchange protocol and can export data written
to off-chip data RAM to other MS Windows applications.

The EMUL51XA-PC hardware is modular. The software user interface
implements an effective high-level debugger. It has support for local variables, C
typedefs and C structures. The trace board options add bus-cycle tracing,
triggering and filtering, shadow RAM, data display, and timing functions.

How to use this manual

This manual was written with different kinds of users in mind. All users should
have MS Windows installed and have learned the skills taught in the Basic Skills
chapter of the Microsoft Windows User's Guide. Many of the EMUL51XA-PC
features are designed around the features of the supported chips. Being familiar
with the chip is a prerequisite to understanding how to use the emulator
productively.

 If you are new to emulators of any kind,

read the manual completely. You may skip the sections that describe pods and
accessories you do not have.

IIf you have used emulators with other microprocessors,

but are not familiar with the chip being emulated, you are strongly encouraged
to review the features of the chip you have, then thoroughly read the section
that

Copyright © ICE Technology

Introducing EMUL51XA-PC EMUL51XA™-PC

2

describes the applicable pod board before running the emulator. The tutorial in
Chapter 10 will familiarize you with Seehau debugger and trace operations.

IIf you are familiar with NOHAU emulators, MS Windows, and the chip,

read the section that describes the pod you are using, then begin using
EMUL51XA-PC, referring to on-line help as needed. After a few days of use,
skimming the reference chapters may highlight useful features. Chapter 10 will
highlight features unique to the EMUL51XA emulator.

Manual Conventions

Type the words in double quotes exactly as shown, but without the quotation
marks, except for the <Enter>, <Ctrl>, <Tab>, <Ins>, and <Alt> keys. Use the
<Alt> and <Ctrl> keys like shift keys. Hold them down while you press the key that
follows them in the text. For example, if the text instructs you to type <Alt>F,
press and hold down the <Alt> key, then press the F key.

Window names and labels that appear on the screen are printed in boldface to
set them apart from the rest of the text.

Any screen may be saved to Windows’ Clipboard Viewer, or pasted to Paint
after using <Alt> Print Screen.

Notes and hints are printed in italics, and

Warnings: are boxed to set them apart from the rest of the manual text. Pay careful
attention to them.

EMUL51XA™-PC Quick Installation Instructions

Copyright © ICE Technology 3

Quick Installation Instructions

System Requirements

The EMUL51XA-PC requires a personal computer with at least 2 megabytes of
RAM (8 megabytes for Windows `95); a CPU that is either 80386, 80486, or
Pentium-compatible; a hard disk with at least 3 megabytes of unused space;
and Microsoft Windows 3.1, 3.11 or Windows `95, Windows NT or OS/2 2.1 (or
higher) installed. A mouse is not required, but is strongly recommended.

One ½ height ISA (or EISA) bus slot is required if you are not using the external
“high-speed parallel” printer port connection.

Quick Setup Instructions

The hardware and software are designed to be easily installed and quickly
running on most personal computer systems. Users can normally begin using
their emulator (without yet connecting to the target) after following these initial
steps. However, if you are new to personal computers, if you are unsure about
what to do after reading the quick installation instructions, or if your emulator
does not work after you follow these instructions, follow the more detailed steps
for installing and configuring each board and the software as outlined in their
respective chapters.

Installing the Emulator

Installing the emulator board is much like installing most other AT-style boards:

1. Turn off the power.

2. Remove the PC cover.

3. Remove the slot cover (if present) for an available 8-bit slot.

4. Insert the emulator board into the slot and use a screw to secure the
emulator.

5. You may now close the cover, and attach the ribbon cable to the emulator
and the pod.

Note: This installation is not applicable with high-speed parallel external
boxes.

Copyright © 1998 ICE Technology

Quick Installation Instructions EMUL51XA™-PC

4

Installing the Piggyback Trace Board (If Used)

1. Turn off the power.

2. Remove PGA pin protector from the pod exposing gold-plated bondout PGA
pins.

3. Mate the PGA male pins and the two side connectors to the Internal/External
Trace Board (IETR); press together.

4. Install 5 VDC skynet power supply on the same power strip as the PC so
that the pod and trace powers are cycled in unison.

J3 (TRIG_OUT)
DB15 connector

Skynet 5 VDC connector
J4 (TRIG_IN)

Figure 1: Assembling pod and trace boards

Installing the Pod

With the PC power off, line up the cable connector with the keyed slot on the
emulator board, and insert. There is no lock, but friction will secure the cable
adequately. On the other end of the cable, insert the cable connector into the
slot firmly, and close the side clamps. Remove any anti-static foam from the
pins on the bottom of the pod when running the standalone confidence test.

Installing the EMUL51XA-PC software

To install this software under MS Windows 3.x, run SETUP.EXE by typing "WIN
A:SETUP" at the DOS prompt or, from within MS Windows, by selecting the
RUN item in the Program Manager File menu and typing "A:SETUP" as the file

EMUL51XA™-PC Quick Installation Instructions

Copyright © 1998 ICE Technology 5

to run. If using Windows `95, open the My Computer facility, select the floppy
drive containing the installation diskette, then double-click on the Setup icon.

After SETUP.EXE is started, a dialog box will ask for a directory for the
EMUL51XA-PC software. Either accept the suggested directory or type a
different one. SETUP will create the directories as needed, decompress and
copy the files from the floppy to the hard-disk directory specified and change the
paths in the ".ini" file. When installed, there will be a Nohau program group
containing the EMUL51XA-PC icon. Double-clicking on this icon will start the
EMUL51XA-PC application.

The program group will also contain icons for several .wri files. These files
contain important information about what has been fixed in the latest revisions
of the software and problems that we know about that have not yet been fixed.
Please take the time to read these files.

Initial Software Configuration

The Windows software is used for all EMUL51XA-PC products. The type of
target processor in the software configuration must agree with the type of pod
you are using. If not, you may see an error message. To ensure that you do not
get this error, we include a utility that you must run when you first install the
emulator, or when you change your pod type. This utility is called INI_XA. (You
can also run this utility any time you want to check the values in the initialization
file.)

To invoke INI_XA, double-click on the icon the EMUL51XA-PC program group
labeled INI_XA. If the EMUL51XA.ini settings are not self-consistent, you will
see a warning message, otherwise you will see the window shown in Figure 2.

Copyright © 1998 ICE Technology

Quick Installation Instructions EMUL51XA™-PC

6

Figure 2: Choosing a target processor with INI_XA

The Emulator Port: field must agree with the values you set in the J1 jumper on
the emulator board, as described in the section “Setting the I/O address jumpers
- J1” on page 58. The Trace Port address can be ignored.

If using the IETR trace and 3.3 volts direct current (VDC) target, make the
changes in the Trace Setup screen for 3.3 VDC (See Figure 48 on page 80.)

Bus width: cannot be changed outside this setup window. The bondout
supports internal code memory of future derivatives. It should reflect the actual
internal code ROM being used.

After you have set up the initial processor type and I/O addresses, you can start
the emulator application. You are done with installation.

Confidence Test

Before starting the emulator software and before connecting the pod to your
target, run the confidence test installed along with the emulator program. An
icon labeled "Confidence Test" will be in the Nohau group. Double-click on it to
start.

EMUL51XA™-PC Quick Installation Instructions

Copyright © 1998 ICE Technology 7

The Confidence Test will read the pod name and I/O address from the
EMUL_XA.INI file If these values are incorrect, you must run INI_XA.EXE. It will
take less than a minute to complete the tests. Many of the tests repeat with
slight variations. If any tests report unexpected errors, email Customer
Support for assistance at support@icetech.com.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 9

Chapter 1: Software User Interface

Detailed Installation Instructions

Before installing the software, it is important to have a basic understanding of
how to operate MS Windows. For help, please refer to the Microsoft Windows
User's Guide.

The EMUL51XA-PC floppy disk includes an MS Windows-compatible
SETUP.EXE program. To install this software, run SETUP.EXE by typing "WIN
A:SETUP" at the DOS prompt before entering Windows or, from within MS
Windows, by selecting the Run item in the Program Manager File menu and
type A:SETUP as the file to run.

If your installation disk is not in drive A, replace the letter "A" with the letter
corresponding to the appropriate drive.

From Windows `95, start the My Computer facility by double-clicking on the My
Computer desktop icon, and selecting the disk drive that contains the
installation disk. Double-click on the drive icon, then double-click on the Setup
icon. As an alternate, you may also select Run from the Start menu, then select
Run from the list, then type A:SETUP. Windows NT users must be logged in as
administrator before they can install the software.

A dialog box will ask for a directory for the EMUL51XA-PC software. Either
accept the suggested directory or type a different one. SETUP will copy files
from the floppy to the hard disk directory specified and modify the configuration
information stored in the ".ini" files as needed.

When installed, there will be an EMUL51XA Program group with an XA
Emulator icon. Double-clicking on the icon will start the application. If you wish
to move the icon to another group, you may do so by using the Move.. menu
item in the Program Manager’s File menu, or by dragging the icon to the new
group.

Configuring the Software

If the Quick Installation instructions do not work, you will most likely need to
adjust either the hardware jumpers, the software configuration, or possibly both.
Please refer to the appropriate chapters for setting the jumpers on any of: the
Emulator board, the Trace board, or the Pod board. The next few pages
describe all of the items in the Config menu. Use these menu items to examine
the software configuration in detail and to change it as needed.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

10

Projects

A project is a collection of software configuration settings that are associated
with a specific person, target, or software development project. The menu item
opens a dialog box that allows you to set up named configurations or projects.
This is first in the menu and described first because all of the other Config
menu item settings will be stored as settings for the current project in a file with
a ".pro" suffix. There is an ".ini" file called and those settings are used if there is
no current project. But if the ".ini" file contains the name of the current project,
all software settings are taken from ".pro" file for that project.

Projects behave differently than say, a word-processing document. All software
configuration settings are written to disk every time you change projects or
whenever you exit the emulator software. There is no "exit without saving
changes" option. Once you make a change to the configuration, it is
immediately effective and will, unless you manually undo the change, be saved
to the disk in the project file.

Creating a Project

Users who change the software settings and THEN change the name of the
project may assume the old project will remain unchanged. In fact, the moment
a new project is created, the current settings will be saved to the old project, not
the new one. The new project will be saved when exiting the debugger or when
changing project settings (again).

Figure 3: Set Project Name Dialog Box

To add a project, open the Set Project Name dialog box and type the new
name over the current name. Because the project name is used as the body of
a DOS file name, do not use characters in the name that cannot be used in a
file name (like a space character). The new project will inherit all the settings
from the old project. To delete a project, highlight the project name, then click
on the Delete item button.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 11

Figure 4: EMUL51XA-PC Title Bar

Setting the Paths..

The name of the current project appears in the emulator software title bar.
Figure 4 is an example of the EMUL51XA title bar for the project named
SCREENS (used to create the screen shots for this manual).

The next item in the Config menu is Paths .. , which opens the dialog box
shown in Figure 5. The emulator uses these directories to find the files it needs.

Each of these fields can hold up to 1024 characters . Each directory in the path
must be separated by a semicolon (;) just like MS DOS path names. By default,
the User load modules: field will contain the directory from the last loaded
object file, and the Emulator internal files: field will contain the directory where
the emulator files were installed.

The Load path: directory is the default directory searched for files and absolute
object files. Any directory can be specified when loading a module, but the
directory shown here is the default. The .ext field specifies the default file
extension. Files in the default directory with this extension will be shown in the
Load code.. dialog box.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

12

Figure 5: Paths Dialog Box

With many compilers, the full path name of each source file is contained within
the object file. Linked object files consisting of several linked objects will,
correspondingly, have several source file names and paths. If that source file
name exists in the object file that EMUL51XA-PC is loading, the debugger will
first look at that source file when updating the Source window.

The second field, Source paths: User source code:, identifies other directories
to search for missing source files not identified in the object file or files moved
since the compile. The directories in this field must be entered by you, the user.
Multiple directories may be entered by using a semicolon between them. When
the small check box is checked, it will tell EMUL51XA-PC to look for source files
in the Load path: directory as well. Simple projects may have all the source and
object files in the same directory (the Load path:) and may not need any
directories in the Source paths: field.

Note: The ".ext" field specifies the source file extension. If your C
modules have the extension ".c", enter that. To see assembler
source (.asm) in the Source window, enter ".asm" (this works only
if line number information is included in the sym file).

The Emulator internal files: field will be set during the installation and may not
need to be changed. Emulator internal files: is the directory the application
uses to find the various support files that are part of the EMUL51XA-PC
software, such as register-definition files and dynamically loaded libraries.
Normally, the installation Program will set this to the proper directory. If you copy

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 13

or move EMUL51XA-PC software to a new directory or disk drive, remember to
change this field.

Mapping memory

The POD-51XA/G3/I includes either 256K or 1 M, divided respectively into 128K
code / 128K data or 512K code / 512K data. This RAM is called emulation RAM,
or emulation memory. The entire address range for both ROM and ROM can be
mapped to either the target or the emulator memory in blocks as small as 16
bytes.

The POD-51XA/G3/E can also map all memory, 256K or 1M, to code space and
none to data space. The Memory map .. menu item under the Config menu
opens the dialog box that controls those address ranges.

When an address is mapped to emulation RAM on the pod, all READ, WRITE,
and instruction fetch cycles at that address are directed to emulation RAM.
Target RAM, target ROM, and memory-mapped devices on the target at that
address are ignored. If your target has a memory-mapped I/O device within a
block mapped to emulation RAM, this mapping will prevent your application from
accessing that device. To avoid this, map the blocks that contain target devices
to the target.

Figure 6: Mapping Memory Addresses to the Target

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

14

There are 8 address ranges in the CODE and DATA dialog boxes respectively.
Each address range can be as large as 128K (512K if 1M POD), or as small as
16 bytes.

The POD-51XA/G3/E can be configured as 256K (1M) code memory, in which
case you must map any external data memory to target.

To define an address range, place a check mark in any check box, place an
insertion point to the right of that box, and type the logical address range you
want. For convenience, there is a button that will map all memory, code and
data to the emulator.

When all the memory map ranges are set the way you want them, click on the
OK button. If you click on the Cancel button, the most recent changes will be
discarded before the dialog box is closed.

Note: If you need to change your setup, un-check the box, select OK,
then recheck the box and enter the corrected address range.

Emulator Hardware Configuration

Run the Program XA INI generator, then ensure that pod jumpers match these
selections, i.e., 8-bit buswidth and bus address width. See chapters 6 and 7 for
more information.

Warning: The settings in this dialog box must agree with the emulator jumper settings,
the pod processor type, and the application startup code. If this is not the
case, EMUL51XA-PC will not work properly.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 15

Figure 7: POD-51XA/G3 Hardware Configuration Screen

The emulator always boots into the Hardware Configuration screen. Port
address refers to the physical emulator ISA bus address (see Chapter 3:
Emulator Board for details), which is set to 200, or the HSP box printer port
address, e.g., 378 for LPT1.

External Address Bus Configuration, Buswidth, Watch Dog disable and
Wait State disable are self-explanatory, and should agree with your user-code
programming of the BCR register and hardware state of the BUSW pin.

For the POD-51XA/G3/I, the Internal Code Memory by default is 32K for the
G3; however the G37 bondout supports up to 64K of internal memory. The
POD-51XA/G3/I must run with the /EA pin pulled high at RESET, and will run
with internal bus timing up to the size specified by this window, or three clocks
per cycle. If using this for ROM-less operations, you might select 4K, after which
the code will execute externally with timing per BTRL bits CR1, CR0, CRA1 and
CRA0. ROM-less designs should use the POD-51XA/G3/E with /EA pulled low
at RESET. Select emulation memory options to match the POD-51XA/G3/E
jumper settings of JP19 and JP21, JP22 (see Chapter 7: POD-51XA/G3/E).

The Clock Frequency must be set to ensure correct POD logic timing (see
Chapter 6: POD-51XA/G3/I and Chapter 7: POD-51XA/G3/E for limitations).

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

16

Miscellaneous Configuration

Figure 8: Miscellaneous Setup Dialog Box

The Miscellaneous item in the Config menu opens a dialog box that controls
special features of EMUL51XA-PC:

when and if automatic resets occur
DDE parameters
the source code address range for limiting breakpoint locations
optional reset vector values Program counter, stack pointer and status
values

By default, the emulator resets the controller when the EMUL51XA-PC software
is started and after an object file is loaded. The Reset chip at start up: and the
Reset chip after load file: radio buttons can disable either of those resets,
which may be helpful during particularly difficult or unusual debugging
circumstances.

Dynamic Data Exchange

The Dynamic Data Exchange (DDE) feature allows one MS Windows
application to send data to another. EMUL51XA-PC uses DDE protocols and
can export 16-bit values from Shadow RAM to other applications, such as Word
for Windows or Excel.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 17

Note: The Internal/External Data Trace Board (IETR) contains the
Shadow RAM. DDE will not work without this piggyback trace
card. It is not necessary, however, to open a Shadow RAM
window to establish a link to the other application.

Most applications use the copy/paste mechanism for establishing the link.
EMUL51XA-PC does not include a Copy menu item, so establishing the link is
slightly different for each client application.

To establish a link from EMUL51XA-PC to Excel, select the destination cell, then
enter the following formula:

=emul_xa/shadow! ‘<ShadowRam address in hex>’

Hint: <Space> characters in the formula will confuse Excel; you may also need to
adjust the address lower or higher when dealing with byte writes.

Address options are <address in hex, b>; meaning “look for a byte transfer” and
<address in hex, 1>; meaning “look for a 32-bit-long transfer.”

Excel, by default, looks for 16-bit values.

Using the time.abs example, we would use

=emul_xa/shadow! ‘0A05D, b’

to see the timer.sec update on the Excel spreadsheet. Once in Excel, you can
easily perform mathematical and graphing operations on the data.

Once EMUL51XA-PC has established the link, the Shadow RAM value will
appear in that cell, and the cell will be updated as often as indicated in the
Config/Misc .. dialog box field labeled DDE sampling interval. This field may be
as small as 100 ms, or as large as 32 seconds.

The final feature, DDE Poke, is not implemented at this time. This lets one write
to memory from the Shadow RAM window as long as the hex value 1234H is
present at the Poke Flag Address location. After changing external data
memory, the Poke Flag Address location is cleared to zero. The idea is to
synchronize writes with the user Program.

Check the Enable code space limits box and set the Low and High addresses
to encompass just these instructions. Configured this way, EMUL51XA-PC will
not allow breakpoints outside that address range.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

18

When the Override at Reset boxes are checked and the fields contain
addresses (in hexadecimal notation), those values will be written to the
controller's Program counter and stack pointer every time EMUL51XA-PC resets
the controller. If you have some test code without a startup module, filling in this
field will force the Program counter to the specified value each time you reset
the controller. Similarly, you can enable interrupts with a PSW of 8000 here
rather than placing the value at address zero in code memory space.

Reset vs. Full Reset

Under most circumstances that you will encounter, a Full Reset is the same as
clicking on the Reset button in the speed bar, selecting Reset and break from
the Run menu, or pressing <Ctrl>F2. The controller is reset by pulling the reset
line low. When the emulator software is first started, or possibly after an
accident on the pod or target, the states of the two large logic chips on the pod
are not known. In a Full Reset before the controller is reset, the large logic
chips on the pod are reloaded with their configuration information (which is why
the Full Reset menu item is under the Config menu). Under all circumstances
you may use the Full Reset menu item in place of clicking on the Reset button.
Unless you are changing the pod type, however this is not needed.

Window Colors

Under the Config menu is the Color.. menu item. Open this dialog box to set
the colors of EMUL51XA-PC child windows. For example, all Program windows
can be set to have a dark blue background with white text to differentiate them
from other kinds of windows. At the same time, all Data windows can be green
with black text, and all Source windows set to have white background and red
text. It is possible to make each window very distinctive.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 19

Figure 9: The Color Setup Dialog Box

For each window class that you wish to change, select it from the Select
window class drop list. While that class name is showing in that field, the colors
you Select will be assigned to that class of windows.

After you have set all the colors the way you want them, you can name your
creation ("color scheme") by typing the name in the Color scheme field and
then click on the Save button. This color scheme can then be recalled by
selecting it from the drop list of color schemes.

Note: Not all combinations of background and foreground colors are
possible due to constraints imposed by MS Windows and your
video configuration. EMUL51XA-PC is constrained by the same
limits as MS Windows itself, and is affected by the color palette
chosen in the Windows Control Panel Program. No matter what
colors you select from this palette, the example text pane in this
dialog box will show you the colors that will actually be used by
EMUL51XA-PC. For information about the Trace menu item,
please refer to Chapter 4.

 Performance Analysis (PPA)

What portion of your application uses most of the CPU cycles? This is the
question that Performance Analysis is designed to answer. You set up address
ranges or bins, run your Program, and then look at the results to see where (or
which bin) your Program spent the most time.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

20

Performance Analysis is a statistical analysis of execution behavior. Once every
second, a percentage of the bus cycles are collected, sorted into their
respective bins, and the results are displayed on the screen.

To get more accurate results, run your Program for longer periods of time (or at
slower clock rates). If you watch the statistics on the screen, you will see them
change quickly at first, then more slowly. When they change very slowly, you
know that the statistics will probably not get any more accurate.

Figure 10: Performance Analysis Control Options

When you select PPAnalyzer from the Config menu, you will see a control
window that looks like the one above. The application and the data collection
will automatically be started every time you open the PPA control window. The
six buttons at the top of the window control the application and the data
collection separately.

Note: Clicking on the SAVE button saves the setup, not the results.

Each bin is really an address range. If the address range corresponds exactly to
the address range of a function, that function name will be displayed next to the
address.

A fetch from an address that doesn't fall within any address range will be
counted in the Miss bin . A fetch from within an existing but inactive address
range bin will not be counted at all. It will not count in the inactive range and it
will not be counted within the Miss bin. Statistics will not be kept for that inactive
bin at all. The Miss bin cannot be made inactive.

The very first time you configure Performance Analysis you will find only one
bin: the Miss bin. This bin cannot be deleted, edited, or be made inactive.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 21

Figure 10 shows that data read and write cycles were ignored; the Code only
option is checked. Only instruction fetches are counted in the statistics. Run at
start causes the PPA to begin automatically.

If you prefer a graphic display, you may turn on the Bargraph option and see
the data displayed in a form similar to that shown in the same figure.

To add bins of your own, click on the Add button to open the list of functions
shown in Figure 10. You may add any of the functions as an address range, or
you may create an address range not on the list.

Figure 11: Adding a Bin

To add a bin corresponding to the main () function, double-click on main in the
function list, then click on the Add button. Note that clicking once on pitr_int will
highlight it, but not update the Start and End and fields with the values for
pitr_int. Also note that double-clicking does not actually add the bin. You must
click on the Add button to actually add one. With the Address Range dialog
box open, you may add as many bins as you like before clicking on the Done
button to close it.

The Length field controls how the End field is used. With a check, the End field
displays the length (as does default length after Add). Without a check mark in
the Length field, the End field displays the end address in hexadecimal
notation.

Using a very similar screen, any bin can be edited by double-clicking on that
line in the PPA Control window of Figure 11. This is how you activate and
deactivate bins.

Once you have collected the data you want, EMUL51XA-PC allows you to either
save or discard the changes you just made to the list of bins. Only one bin
configuration can be saved, not one per project like most configuration settings.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

22

This bin configuration will be automatically restored the next time you use
performance analysis.

Memory Coverage

The EMUL51XA-PC trace option includes the hardware necessary to monitor
memory and correlate its use with your C-source code. If instructions are
executed, the trace board will mark those addresses.

Note: The IETR distinguishes between prefetched and executed
instructions. ONLY executed instructions are marked as covered.
In the following discussion “coverage” means “executed.”

Choosing Memory Coverage.. from the Config menu will open a Coverage
window and put the trace board into a “Coverage Mode’’ that prevents normal
tracing. As long as this coverage window is open, the Trace window contents
will not change. If initially closed, the Trace window will stay empty until you
close the Memory Coverage window.

If you load your application software before you open the coverage window, the
Memory Coverage window will display rows, where each row has a starting
address on the left and small black squares to the right. The starting and ending
addresses are taken from the object file you have last loaded. You may set any
address range by selecting the Edit item in the Coverage menu.

Figure 12: Editing the Coverage Address Range

You may either edit the existing range or you may add one or more address
ranges. To edit the existing range, double-click on the line containing the
address range. Double-click on the empty line just below the existing range; this
will add another range, or use Add to include other addresses.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 23

EMUL51XA-PC supports any number of address ranges. The ranges may be
located anywhere in the address. The only practical limit is that the sum of all
ranges must be less than 256 kilobytes with the IETR 128 trace and less than
1024 KB with the IETR 512 trace. You will need to use the trace setup screen
Trigger Memory Mapping.. to cover the correct 256 KB or 1024 KB address
range.

Once you have edited the address ranges, i.e., changed them from the default
range setup when loading the file, save these settings for future use. The Save
menu item in the Coverage menu will write the current address range(s) to the
.ini file. The Load menu item will read them from the .ini file.

Each square represents a memory word: two bytes starting on an even byte.
Squares are grouped into segments 8 squares across. There are four rows of
segments for each address. Figure 13 shows a Memory Coverage window with
seven segments in each row. In this case, each row of dots represents 70 hex
bytes of memory. Each row of blocks represents 1C0 hex bytes. As the window
gets wider, each row contains more blocks of squares, and the addresses will
get farther apart.

Figure 13: Typical Memory Coverage Window

A square (or memory word) that has been covered will be blue in color. If either
byte of the word has been executed, the square will change color. Unexecuted
squares will remain black. This gives you a visual estimate of how much of your
code has been executed since the Coverage window was last reset. For an
exact representation, look at the Program and Source windows.

As shown in Figure 14, there are new symbols in the Source and Program
windows. In the Program window, you will find either a : or an x between the
address and the rest of hexadecimal value at that address. The : means that
the opcode has not been executed; x indicates that it has been.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

24

Figure 14: Program and Source windows in Coverage Mode

In the Source window, there are four new indicators between the line number
and the line text: + = & %:

+ All opcodes from this line were executed.

% Some opcodes from this line were executed.

- No opcodes from this line were executed.

& This line generated no executable code.

Summary Memory Coverage Report

A screen full of coverage information is helpful, however there are additional
reports that can satisfy government safety and other regulations.

When you select Report from the Coverage menu, you will see a dialog box
similar to Figure 15.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 25

Figure 15: Summary Coverage Report

For every module loaded, you see a range of addresses that have been
executed since that last time the coverage memory was reset. You may see the
summary applied to source lines (as in the example), or to absolute addresses
and opcodes (the default). You may also invert the sense of the summary
report. Check the Uncovered box and the report will display only the
unexecuted addresses or lines.

To obtain a written copy of the report, click on the Print button. This will send
the summary to the current default printer. A different kind of report, one that’s
more detailed, can be made by clicking on the .COV files button. Figure 16 is
the dialog box that configures these reports.

The summary report is good for small test runs that can be completed without
turning off your PC or exiting the EMUL51XA-PC software. More typically
software testing will extend over a period of days The detailed coverage reports
let you combine multiple test runs in a single document (for each source file).

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

26

Detailed Coverage Report

Figure 16: Producing Detailed Coverage Reports

The detailed coverage report produces a text file that looks like the Source
window while in coverage mode. It reads in the source file (or a previous
coverage file), and puts the line number and one of the four status characters at
the beginning of each line. The output text file is written to the same directory as
the source file and, by default, has .COV as a suffix to distinguish it from the .c
file. You can change the output file suffix by changing the Result files ext. field.

If the source file scanned is actually the output from a previous coverage report,
it will combine the two reports so that lines covered by either report will be
marked as covered in the new report. This is the feature that allows you to run
your tests over several days and still generate a single set of files that
accurately reflect how well all of the tests together have covered the generated
instructions.

Typically you will want the emulator to create a detailed coverage report for all
source files, so leave the File name: field empty and the For all files field
checked. You can, of course, generate coverage reports for a single module, in
which case you would double-click on that module name in the list box.
Checking the Overwrite box will ignore the coverage data in the input file, if
there is any. Then the report files will only reflect the current coverage data. The
Base files ext field selects the extension of the input text files. If there is no file
with the specified extension, the source file for the current module (from the
object file) will be used as the input file to generate the report.

Warning: Be sure to close the coverage window when analysis is done.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 27

Menus

The primary means of controlling the debugger, thus the emulation, is through
menus. The EMUL51XA-PC menus conform to the Microsoft MDI standard.
Only those menu items that have meaning or can be used with the current
selection will highlight when the mouse is pointing to them. Menus are organized
to hide items that are out of context.

Most menu items have "Hot Key" equivalents. That is, there is some
combination of function keys, character keys, and modifier keys (Control, Shift,
or Alt keys) to select most menu items. The Hot Key for each menu item is
shown to the right of the item name, and also below. Where you see "<Alt>FS" as
the keyboard shortcut, you should type <Alt>F (hold the Alt key down while you
then press the F key) to open the File menu, then press the S key (without the Alt
key) to activate the portion of EMUL51XA-PC that writes "S" record files.
Holding down the Shift key or turning on CAPSLOCK is not necessary. Even
though the keyboard shortcuts are all shown in capital letters, the shortcuts are
not case-sensitive.

File Menu

Load code .. F3 Loads an absolute file.

EMUL51XA-PC supports many popular compiler object file formats.

Load default symbols ..

<Alt> FC Loads symbols defined by
the MCU manufacturer.

Selecting this menu item will load the default symbols defined by the MCU
manufacturer in their manuals. This will enhance the display in Program window
by converting the addresses of SFR registers into their respective names and bit
descriptions.

Save code as .. <Alt>FS Writes the contents of RAM
or ROM to a HEX record
file.

Any region of memory can be saved to a file for reloading later. Selecting this
menu item opens a dialog box that lets you select an address range. Please
note that only the S19 file format is supported at this time.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

28

Remove Symbols

Remove Symbols <Alt>FR Deletes all line number and
symbolic information.

Show Load Info

Show load info ..

<Alt>FI Displays a window
describing the object file
last loaded including
number of variables,
address range loaded, etc.

This menu item opens an information box like the one in Figure 17.

Figure 17: Example Load Statistics

The load information is a summary similar to the one shown when loading
completes.

Note: The compiler information in the Generate by field may show a
different compiler than the one you used. If two compilers use
identical file formats, the emulator cannot distinguish one from
the other.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 29

Preferences

Preferences <Alt>FP Controls the way the
emulator loads object files.

The preferences dialog box controls the way that object files are loaded.

Exit

Exit <Alt>X Quits EMUL51XA-PC

Exiting the EMUL51XA-PC software will update the current debugger
configuration to either the .ini file or to the current .pro file, if one is selected.

View/Edit Menu

Copy to clipboard <Ctrl><ins> Copies text (without formatting or
font information) of the entire
active window to the clipboard.

User defined symbols <Alt>VU Opens a dialog box that lets you
select the module from which
you can view symbols.

Default CPU symbols <Alt>VD Views and edits memory-
mapped registers by name and
by the bit.

C call stack .. <Alt>VC Opens a child window that
displays the C call stack and
passed parameters needed to
reach the current Program
counter.

Evaluate .. <Ctrl>E Opens a dialog box that
evaluates C expressions.
Expressions may contain
variables. Assignment
expressions may change the
values of variables.

Hint: To change the value of a variable, use the Evaluate window to evaluate a C
assignment expression such as "i=75".

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

30

Inspect .. <Ctrl>I Opens a dialog box that displays
the contents of a single variable,
structure, or array in detail.

Add a watch point .. <Ctrl>W Opens a child window that
displays groups of variables that
is updated every time emulation
halts.

Search.. <Ctrl>S Opens the Search dialog box.

This menu item opens a dialog box that lets you search the active window for
the kind of data displayed in that window. If the Source window is active, you
can search for text strings within that file. If the Trace window is active, you can
search for any trace record. (See page 65 in the Trace chapter for more details.)
In all other windows that support searching, the search is for a hex pattern.

Search next <Ctrl>X The last search defined will be
performed again, from the
cursor forward.

Search previous <Ctrl>P The last search defined will be
performed again from the cursor
backward.

Run Menu

Step into F7 Executes one instruction,
including a jump instruction. If a
Source window is selected,
executes all the instructions for
one line of source.

Step over F8 Executes one instruction or all
the instructions in a subroutine.
If a Source window is selected,
executes all the instructions for
one line of source. Due to some
kinds of optimizations, this
feature may not always be
available.

Animate .. <Ctrl>F7 Executes instructions
continuously and slowly,

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 31

highlighting each instruction or
each line as it is executed.

Go F9 Begins executing instructions
from the current PC at full
speed until the next breakpoint.

Go to cursor F4 Executes the instructions from
the PC to the current cursor
position.

Go to .. <Ctrl>F9 Executes the instructions from
the PC to the specified address.

Go to return address <Alt>RN Executes the instructions from
the PC to the next found
function return. Due to certain
optimizations, this feature may
not always be available.

Go FOREVER <Alt>RF Executes instructions from the
current PC after disabling all
breakpoints.

Break Emulation F9 Suspends execution as if a
breakpoint was encountered.

Soft Reset (get vector) Alt FS

Reset Chip! <Ctrl>F2 Resets CPU without executing
any instructions.

Reset Chip and Go Resets CPU and begins
execution from reset vector
when emulator is already
running.

Breakpoints Menu

Note: Customers setting breakpoints normally use a software
breakpoint. We suggest you use a hardware breakpoint only
when your code is in PROM or EPROM. A hardware breakpoint
will result in a one instruction skid (version 1.01 or later).

Toggle F2 Disables or enables existing
breakpoints.

Hardware breakpoints.. Opens a dialog box that lets you
set up address ranges for
hardware breakpoints (that don't

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

32

use the trace board).

Break on external data
access ..

Permits breaking on external
read or write cycle; address
resolution is 16 bytes. (See
Figure 18.)

Hardware breaks only If this menu item is checked, all
Program/source window
breakpoints will result in
hardware breakpoints.

Figure 18: Break on external data access

At .. <Alt>F2 Sets a breakpoint by address, line,
or line in module.

Setup .. <Alt>BS Opens a breakpoint editing dialog
box.

Disable all <Alt>BI Disables all breakpoints from being
active while remaining in the list.

Delete All <Alt>BD Clears all existing breakpoints.

Break now! <Ctrl>C Immediately halts the emulation.

Config Menu

Project name .. <Alt>CN Chooses a configuration or project
from a list of existing projects, or

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 33

creates a new one.

Paths .. <Alt>CP Sets the default directories for finding
load files, source files, and emulator
files.

Memory map .. <Alt>CM Assigns memory to either emulation
RAM or the target (16 byte
resolution).

Emulator Hardware .. <Alt>CE Sets the emulator board address,
controller type, and Special Function
registers reset values.

Miscellaneous .. <Alt>CM Sets automatic PC & SP reset value,
DDE sampling interval, and memory
scroll range values.

Full Reset <Alt>CF Reloads on-pod logic & performs
reset.

Color .. <Alt>CC Assigns colors to windows.

Trace .. <Alt>CT Please refer to Chapter 4 for
information about the Trace Setup
dialog box.

Memory Coverage .. <Alt>CV Opens the dialog box that controls
Memory or Code coverage. See
earlier detailed discussion.

PP Analyzer <Alt>CA Opens a Performance Analysis
control window and starts recording
addresses.

These next nine menus share one location in the menu bar. The menu
displayed corresponds to the kind of child window selected. Selecting a different
kind of child window will change which menu is displayed. To do this, either use
the Window menu, or just click the mouse on any part of the desired window.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

34

Program Menu

Address.. <Ctrl>A Scrolls the selected Program
window to the specified address.

Origin (at Program
counter)

<Ctrl>O Scrolls the Program window to
display the PC address.

Set new PC value at
cursor

<Ctrl>N Sets the Program counter to the
address at the cursor.

Module <Ctrl>F3 Opens a dialog box that allows
quickly scrolling the Program
window to the start of any module.

Function <Ctrl>F Opens a window listing all the
functions in all modules loaded.
Selecting one will scroll the Program
window to the start of that function.

View source window <Ctrl>V Scrolls (or opens) a Source window
to show the source at the current
Program window cursor.

Toggle breakpoint F2 Enables or disables a breakpoint at
the cursor.

Source Menu

Address.. <Ctrl>A Scrolls the selected Source window to
the specified address, which may be a
function name or a label.

Origin (at Program
counter)

<Ctrl>O Scrolls the Source window to display
the Program counter address.

Set new PC value at
cursor

<Ctrl>N Sets the Program counter to the
address at the cursor.

Module <Ctrl>F3 Opens a dialog box that allows quick
scrolling the Source window to the
start of any module.

Function <Ctrl>F Opens a window listing all the
functions in all modules loaded.
Selecting one will scroll the Source
window to the start of that function.

Call stack .. <Alt>SC Opens a window that displays the C
call stack and passed parameters to
reach the current Program counter.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 35

View assembly code <Ctrl>V Scrolls (or opens) a Code window to
the current source window cursor).

Toggle breakpoint F2 Enables or disables a breakpoint at
the cursor.

Data Menu

Address.. <Ctrl>A Scrolls the selected Data window to
the specified address.

Original Address <Ctrl>O Scrolls the selected Data window to
the last address used in an Address..
menu command.

Edit .. <Enter> Alters the contents of the highlighted
location.

Block move.. <Ctrl>B Moves a segment of RAM to another
location (in RAM).

Fill.. <Ctrl>F Fills RAM with the specified value or
pattern.

Data Display as.. <Ctrl>D Sets the data display mode (ASCII,
hexadecimal bytes, long integers, etc.
See Figure 20 for the complete list of
formats).

Address space.. <Alt>DS Sets the address space for the
selected Data window.

Inhibit readback on <Alt>DI Toggles data window to prevent read-
after-write check.

Register Menu

Edit <Alt>/E/E Either select a register then select this
menu item, or more simply, select a
register and type a new value. The
first character typed will open the
same dialog box as selecting the Edit
menu.

Modify Display <Alt>EM lets you un-select registers from the
window

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

36

Trace Menu

 Please refer to Chapter 4 for all information regarding the Trace board and user
interface.

Stack Menu

PaRameters in Hex <ALT>SP Displays the function paRameters
in hex instead of in their declared
type.

Show function <ALT>SS Not implemented at this time.

Watch Menu

Add .. <Insert> Opens a dialog box for adding a
variable to the Watch window.
You may mouse to select the
variable, structure member (point
to right of .), or string element.

Edit .. <Enter> Opens a dialog box for editing an
existing variable in the Watch
window.

Remove .. <Delete> Deletes the selected variable from
the Watch window.

Window Menu

The Window menu items open new windows, close existing windows, select
windows, and arrange windows on the screen. Detailed operation follows the
hot-key descriptions.

New window Program Alt>WNP Opens a new Program window.

Source <Alt>WNS Opens a Source window.

Data <Ctrl>WND Opens a Data window.

Registers <Alt>WNR If one is open, it will ask, “Are you
sure?”

Special Registers <Alt>WNE

Trace <Alt>WNT Opens a new Trace window.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 37

Watch <Alt>WNW Opens a new Watch window

Toggle help line <Alt>WNH Turns on or off text at the bottom
of the EMUL51XA-PC window.

Repaint <Ctrl>R Repaints the screen.

Tile windows <Alt>WT Resizes and arranges the
windows within the EMUL51XA-
PC application.

Cascade windows <Alt>WC Resizes and overlaps the
windows within the EMUL51XA-
PC application.

Arrange Icons <Alt>WA Lines up any closed EMUL51XA-
PC icons at the bottom of the
main window.

Zoom F5 Expands selected window to fill
the EMUL51XA-PC window.

Next window <Ctrl>F6 Changes the currently selected
(highlighted) window.

Close <Ctrl>F4 Closes the currently selected
window.

Below the Close menu item, there is one menu item for each open window, and
the active window will be checked. Selecting one of these items will open the
window if it is closed down to icon size, and activate it.

Help Menu

Selecting the Info.. menu item will open a box that displays the application
version number and date. Please have this information handy when calling for
support.

The other help selections are self-explanatory.

Dialog Boxes

Many menu selections open dialog boxes that allow you to input more specific
information. Some of these dialog boxes are described above next to their menu
items. The rest are described in this section.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

38

Child Windows

There are eight primary child windows created by EMUL51XA-PC: Program
windows, Data or Memory windows, Inspect windows, Source windows, a
Registers window, a SpecialRegs window, Trace windows (even if you have
no Trace board), Watch windows, and a Call Stack window. All of these
windows are opened by selecting the corresponding item in the Window menu.

Any number of child windows may be open at the same time. Any number of
child windows can overlap but only one child window is active (has the focus) at
a time. Some may be scrolled and resized to view any address desired. Their
locations and sizes are saved to the current project file when EMUL51XA-PC
exits, and will be restored when the software restarts.

Each child window has a corresponding menu that appears between the Config
menu and the Window menu. The menu contains items that only make sense
within the context of that window. This window-specific menu will also appear at
the cursor when you click with the right-mouse button in the body of the active
window.

Register Windows

 The Registers window displays the CPU registers. All
registers are displayed in hexadecimal notation. Clicking anywhere in the
Registers window will select that window (make it the active window).

Local menu device lets you Edit a register value and Modify the included
registers.

Figure 19: Registers Screen

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 39

Data Windows

 Use Data windows to examine or modify emulation or
target memory directly. EMUL51XA-PC uses the controller to read and write
RAM, so the Data window cannot be updated while the emulation is running.
Instead, asterisks will be displayed until data can be read from memory.

Data can be displayed or modified in a variety of formats as shown in Figure 20.
Keep adding new windows for each display format and starting address.

Figure 20: Data Window Menu

Selecting any Data window displays the Data menu shown above.

Changing a value at any memory location is as easy as selecting the byte, word,
or long word to change and then typing the new value.

Figure 21: Editing Memory with a Data Window

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

40

On the far right side of the Edit data dialog box is a small check box labeled with
the letter C. This box impacts how the emulator interprets the data you enter.
For example, if you have a symbol named "abcd" and you are displaying in 16-
bit hex, it is not clear whether to interpret "abcd" as a symbol name or as a hex
number. With the box checked, the emulator uses C syntax first, so it will be
treated as a symbol name. Without the C box checked, assembler rules apply
first, and it will be interpreted as a hex number (see far right edge of Figure 21).

Data windows can be assigned to read from and write to either internal or
external code space, data space, or Shadow RAM.

Shadow RAM is a separate data space on the IETR that reflects (“shadows”) all
external writes to memory. SHADOW windows update approximately four times
per second without any intrusion on CPU execution.

Special Registers

This window displays SFRs, including individual SFR bits. Change any value by
selecting the SFR of interest and using the <Enter> key. The right mouse
displays user options. Use the Add option to build a watch-like window of SFRs
and individual SFR bits of interest.

Figure 22: View SFRs

Another method of viewing SFRs is with the View/Edit menu. You will be able to
view all SFR bits as well as bit usage in a dialog box.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 41

Warning: Caution should be exercised when changing some SFRs such as PCON.
Setting the PD bit here will cause Power-Down mode, shutting down the
bondout clock and resulting in loss of communication to the emulator board.

Custom Display Format

Selecting the custom format option opens a dialog box that lets you input a C
printf format string. All standard C formats are allowed, including the new line
character. If you are trying to display odd address integers or floating point
numbers, you must use the custom display format.

Program Windows

 A Program window disassembles and displays code
memory. One line in the Program window is always highlighted. This is the
cursor. The color of the highlighting and the window depend upon how you have
configured your color settings. (See page 18 for information about how to
change the color settings.)

Figure 23: Program Window

The first column is the hexadecimal address. If the address is highlighted, there
is a breakpoint at that address. You may set or inactivate a breakpoint by
clicking on the address.

The second column is the hexadecimal value at that address. Between the
address and the hexadecimal data may be an arrow pointing to the right,
indicating the current Program counter.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

42

The third column contains the disassembled instructions and operands.

Program windows can control the emulation. To set a breakpoint, click once on
the address portion of the instruction where you want the break. Or, you may
click once on the desired instruction (to highlight that instruction) and then click
on it again to set a breakpoint. A breakpoint is indicated by displaying the
address with white letters on a black or dark background. This second mouse
click (not a double-click) creates the breakpoint. To deactivate (not delete) that
breakpoint, click again on the same instruction. The address will no longer be
highlighted and the breakpoint will be inactive. To delete the breakpoint, use the
Setup.. dialog box from the Breakpoints menu. Any highlighted instruction can
be a temporary breakpoint. The Run menu item Go until cursor, F4, will use
the cursor as a temporary breakpoint.

In-line Assembler

Simply highlight the instruction or address you wish to change in the Program
window. The first character typed will open an edit dialog box to display the
characters you type and allow you to edit your assembler source line.

The in-line assembler will translate the input line according to the syntax
described in the P51XAG3 data books and replace the former opcode(s) and
data with the new opcode(s) and data. Note that the assembler will write as
many bytes as required for the new instruction. This may overwrite part or all of
subsequent instructions. Be sure to examine the subsequent instructions as well
as the new instructions for correctness.

Source Windows

 The Source window displays the C source (or
assembler source if the assembler supports source-line debugging) of the
module containing the Program counter. Like a Program window, a Source
window displays the source text, line numbers, a cursor (the blinking underline),
and a small arrow between the line numbers and the source text to indicate the
current Program counter value.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 43

Figure 24: Source Window

After each single step, and during each animation pause, the Source window
scrolls to show the source line that generated the instruction pointed to by the
new Program counter, if it was generated by a source line.

In Source windows, breakpoints are displayed by inverting (or highlighting) the
entire source line. In Program windows, only the address is highlighted. In
Source windows, a single click on any line number (or address in the Program
window) will toggle the breakpoint. In both kinds of windows, pressing F2 will
toggle a breakpoint on the highlighted instruction.

When a Source window appears blank with the window title "Source", it usually
means that the Program counter is pointing to instructions derived from a
module with no debugging information. As soon as the PC points to an
instruction from a C module or assembly module with line number symbols, the
Source window will show that text, and the title on the window will change from
"Source" to the name of the source file being displayed.

The simplest way to find the first line of source is to reset the controller, click on
the Source window title bar to select it, and then execute a single step by
pressing the F7 key (or by clicking on the Step button on the speed bar).

When the Program window is selected, a single step means a single opcode.
The same is true for animated execution: a pause occurs after every opcode is
executed. When the Source window is selected, a single step means a single
source line. Animation will execute faster when the Source window is selected
than when the Program window is selected because most source lines compile
into more than one machine instruction.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

44

Trace Window

 For information about the Trace window, please refer to
Chapter 4: Internal/External Data Trace Board.

Other Windows

Three more child windows used for high-level debugging in C are available: the
C call stack window, the Evaluate window, the Inspect window, and the Watch
window (see Figure 25). These windows are opened by selecting their
respective items in the View/Edit menu.

Figure 25: C call stack, Evaluate, Inspect & Watch Windows

The Inspect window is useful when displaying structures or arrays. To open an
Inspect window, either select the Inspect .. menu item in the View/Edit menu or
double-click in the Source window on the variable you would like to inspect.
Double-click in an open Inspect window on a structure member or array
element to open an Inspect window detailing that field.

The Inspect window can stay open just like a Data or Watch window, and it will
be updated whenever the application stops. The variable being displayed may
be part of an equation written following the rules of C that produces a single
scalar answer.

EMUL51XA™-PC Chapter 1: Software User Interface

Copyright © 1998 ICE Technology 45

Note: If you have an open Inspect window with an assignment
statement, every time the emulator stops executing, the
expression will be evaluated and the variable will be updated.
Assignments are better done with the Evaluate window.

The Watch window displays multiple variables being watched, one variable per
line. Any local variable in the Watch window that is not in scope will be
displayed with three question marks instead of its value.

Place the cursor on the variable of interest and use <CTRL>W to add it to the
Watch window.

Evaluate Window

The Evaluate window is opened by selecting a variable in the Source window
with the cursor and using <CTRL>E. This allows editing of the current variable by
using the C assignment operator = to the right of the variable. In fact, any C
expression may be performed in this edit window.

Hint: This window can also serve as a hexadecimal calculator, using the C syntax
0x____ for hex numbers. For example, to determine a timer overflow value from
50000 decimal, simply type 0xFFFF - 50000.

Stack Window

The Stack window displays the "call stack," or the list of functions called to
reach the current point in the application, and the paRameters passed to them.

Addresses are displayed and entered using hexadecimal notation or global
symbol names.

Note: Symbol names are case-sensitive. If a symbol cannot be found,
try the same name with a different case. Also note that some
assemblers shift all symbols to uppercase.

Copyright © 1998 ICE Technology

Chapter 1: Software User Interface EMUL51XA™-PC

46

Tool Bar

Just below the menu bar is the "Tool Bar" containing icons or buttons that, like
Hot Keys, execute frequently needed menu options when clicked. The Help
button opens the MS Windows Help application to the page that describes the
current context. The Reset button resets the controller. The Step button
emulates one source line or opcode depending upon which window was last
active. The Go button starts full speed emulation that will continue until a break
occurs. While emulating, the Go button changes to Break, and halts emulation
when clicked. The Trace Beg button resets the trace board and starts bus cycle
recording according to the conditions set in the Trace Setup dialog box.

Figure 26: The Tool Bar

Help Line

At the bottom of the EMUL51XA-PC window is a line of text that, depending
upon the context, explains what the selected item is or what it does. This kind of
context-sensitive help is turned on and off with the Toggle help line item in the
Windows menu.

EMUL51XA™-PC Chapter 2: Emulator Macro User Guide

Copyright © 1998 ICE Technology 47

Chapter 2: Emulator Macro User Guide

Introduction

The Nohau Emulator Macro System consists of two program files
together with this guide. The System requires the 16-bit version of Microsoft
Visual Basic 4 Professional Edition, or the standard edition of VB3. Macro
creation uses many of the features of Visual Basic, such as debugging. The
macro writer uses a low-level DLL and a library of useful functions. Additional
functionality is easily added by the macro writer. Run macros from Visual Basic
for testing and debugging or as stand-alone executables.

Note: Install Visual Basic before using these files.

 Currently only VB5 is sold at retail outlets. Order the Learning
Edition, then call Microsoft to downgrade to VB3 standard edition
with its 16-bit DLL support. If you want features in the
Professional Edition, order VB5 Professional and downgrade to
VB4 Professional.

General description of the emulator macro setup

There are two files provided in the Emulator directory:

emul51xa.bas the Visual Basic API
emul51xam.ico the icon to use for executable macros

The following is a guide to installing the macro system for writing macros and a
reference to the subroutines provided.

Visual Basic Supplemental User Guide

It's easy to write macros:

1. Execute Visual Basic

2. Set up your icon

3. Make the form invisible

4. Add the emul51xa.bas file to your project

Copyright © 1998 ICE Technology

Chapter 2: Emulator Macro User Guide EMUL51XA™-PC

48

5. Name your project

6. Write your macro code

7. Create your executable macro

8. Exit Visual Basic

9. Test it!

For detailed instructions, please refer to the section entitled “Procedure for
Writing a Macro”.

Warning: DO NOT change emul51xa.bas. Use another module if additions are needed.

We recommend the following Visual Basic options to be found under the
Options/Environment Main Menu selection:

Require Variable Declaration = Yes
Syntax Checking = Yes
Default Save As Format = Text
Save Project Before Run = Yes

Note: Refer to the Visual Basic manual for more details about the
Program, as this document contains only the information required
for writing macros.

Procedure for writing a macro

1. Execute Visual Basic, or if it is running, create a new project from the
Microsoft Visual Basic main menu with File/New Project.

2. Set up an icon in the main form Properties window (use the icon
“emul51xam.ico” for this purpose).

a. In the Properties window, click on the ICON selection.

b. At the top of the Properties window, click on the "..." button.

c. In the Load icon dialog box, select the directory where the icon is
located (i.e., c:\emul51xa).

d. Select the emul51xam.ico icon under File Name; Click OK.

EMUL51XA™-PC Chapter 2: Emulator Macro User Guide

Copyright © 1998 ICE Technology 49

3. Set visible to “false” in the property window to make the main form invisible.

a. In the main form Properties window, select the “visible” entry.

b. Click drop down arrow in the Change window.

c. Click on FALSE.

4. In the Microsoft Visual Basic Main Menu, select File/Add File.. to add the
emul51xa.bas file to the project.

a. In the Add File dialog box, select the c:\emul51xa directory.

b. Select emul51xa.bas; click OK.

5. Name the form in the Project and save.

a. In the Properties box, click on NAME.

b. Type in the new name (e.g., "LoadTime").

c. In the Microsoft Visual Basic main menu, select File/Save
Project As..

d. Save changes to "LoadTime.frm"? Choose Yes.

e. The Save File As dialog box should show "LoadTime.vbp" in
c:\emul51xa directory; click OK.

f. In the Save Project As dialog box, change the file name of the
project file to "LoadTime.mak"; click OK.

g. The result is a project window with the name "LOADTIME.VBP"

6. Write code in the Form_Load subroutine.

a. In the Project window, select the form ("LoadTime.frm").

b. Click the View Code button.

c. In the Forms Code window, select "FORM" from the object drop-
down box.

d. Type in the line (indented): "EmulInit"; press Enter.

e. Type in the body of the macro code (see example below).

Copyright © 1998 ICE Technology

Chapter 2: Emulator Macro User Guide EMUL51XA™-PC

50

Figure 27: Macro Code Example

f. Type "END ", allowing the macro to exit.

7. When the Program is finished, make an executable Program from the File
menu using the File/Make.EXE command.

a. Select File/Make.EXE.

b. The MAKE.EXE dialog box appears; check to ensure it shows the
correct file name and directory.

NOTE: Change the application title at this time if desired.

c. Click OK.

8. File/Exit; For any "Save Changes?" Choose Yes.

Example of a Macro:

The following is in the general/declarations section of the main form:

SUBROUTINE DESCRIPTION

Option Explicit Force explicit declaration of variables.

Sub Form_Load () This subroutine executes when the macro
loads and appears in the Form, Load
section of the main form.

Dim byt As Integer Declare byt as an integer variable.

Dim ret As Integer Declare ret as an integer variable.

Dim dwd As Long Declare dwd as a long variable.

Const ShadowRam = 1 Const ProgramWin = 2

EMUL51XA™-PC Chapter 2: Emulator Macro User Guide

Copyright © 1998 ICE Technology 51

SUBROUTINE DESCRIPTION

Const RegisterWin = 3 Const DataWin = 4

Const SourceWin = 5 Constants for activating the windows of
project:proj1 (For the current version of
the macro language, we suggest that you
use “project” to specify the MDI child
window locations and their order. See
“Projects” on page 10.)

EmulInit Initialize the macro library and the
emulator (if not running).

LoadProject “proj1” Load project setup

LoadCode
“c:\emul51xa\tasking\time.abs”

Load the code and symbol file.

WindowSelect SourceWin Select the Source window.

StepOver Step a couple of times.

WindowSelect DataWin Select the Data window.

SetAddress &H5000 Set the start address to 0x5000

DisplayAs DT_8BITHEX Set the format to 8-bit hex; the DT_xxx
constants are found in emul51xa.bas.

WindowSelect ShadowRam Select the ShadowRam window.

DisplayAs DT_ASCII Set the format to ASCII.

WindowSelect ProgramWin Select the Program window.

SetAddress &H3000 Set the address to 0x3000

SendKeys
“nop{ENTER}nop{ENTER}nop{ENTER}
jmp 3000{ENTER}”, True

Assemble some code into the Program
window. The last paRameter (True) is
used to wait for SendKeys to finish before
going on the next statement.

PutPC &H3000 Set the PC to the assembled code.

Byt = 0 Clear the byt variable

Copyright © 1998 ICE Technology

Chapter 2: Emulator Macro User Guide EMUL51XA™-PC

52

SUBROUTINE DESCRIPTION

ret = GetShadowByte (&H5010, byt) Get the byte at 0x5010.

MsgBox “Shadow byte at 0x5010 = ” +
Hex$ (byt) + “h,”, MB_OK, “LoadForm”

Display the value (MB_OK is found in
emul51xa.bas) in a message box.

Go From 0x3000

For dwd = 0 To 100 A wait loop

DoEvents Let another Windows application run.

Next

Break Stop executing

dwd = GetPC () Get the current PC into a previously
declared variable “dwd”.

MsgBox “The PC is: Ox” + Hex (dwd) +
“.”, MB_OK, “Test Macro”

Display the variable “dwd” as a hex value
in a message box.

EmulReset Prepare to run the previously loaded code
module.

SetBpAtLine 138 Set a breakpoint at source line 138 in the
current source module.

GoToBP Go until a breakpoint is encountered

End Exit from macro.

End Sub

9. Enter File Manager and select emul51xa directory.

a. Drag the executable file (in this case "LOADTIME.EXE") from the
File Manager into a file folder in the Program Manager.

b. Execute the Program by double-clicking on the icon.

c. Drag the project file ("LOADTIME.MAK") from the File Manager
into a file folder in the Program Manager.

d. To edit your macro, execute Visual Basic by double-clicking on
the icon produced from step c.

EMUL51XA™-PC Chapter 2: Emulator Macro User Guide

Copyright © 1998 ICE Technology 53

Subroutine Reference

Constants
Use constants for the Visual Basic message box subroutine and the Display As
values for the different data formats. Refer to emul51xa.bas for the names of
these constants. Any other constants needed are documented in the Visual
Basic or Visual Basic Professional Help files.

Global Variables
Use the following four global variables (DO NOT modify them in any way):

EmulHandle This is the Windows handle for the emulator
Program.

EmulName This is the full emulator Program name as
appears in the title bar.

EmuliniName This is the name of the current emulator ".INI"
file.

EmulWorkDir This is the current working directory (usually
the directory that the emulator Program
resides in).

Windows API If needed, the Windows API is documented in
the Visual Basic Professional Help File system.

Warning: Use either fixed strings (Dim str As String *100) or variable strings (Dim str
As String) that have been pre-initialized, for example, using Space$ () to
make the string as long as needed for the API call.

Copyright © 1998 ICE Technology

Chapter 2: Emulator Macro User Guide EMUL51XA™-PC

54

Nohau Subroutines

Note: spacex used in all read or write subroutines refers to data (0) or
code (1) address space.

SUBROUTINE DESCRIPTION

Sub Break () Stops emulator execution.

Sub DisplayAs (ntype As Integer) Changes the current display format in the
active window. (Note that this can only be
used in windows that have a display
format.) The window must be made active
with Window Select.

Sub EmulInit () Sets up the macro for execution and starts
the emulator Program if it is not running.

Sub EmulReset () Performs a normal emulator reset.

Function FindEmulWindow () As Integer Used internally to set up the global
variables, and is not normally used in
macros.

Function GetByte ByVal address As
Long, spacex As Integer

Gets a byte from data memory.

Function GetDWord ByVal address As
Long, spacex As Long

Gets a long or double word from data
memory.

Function GetPc () As Long Gets the current value of the Program
counter.

Function GetPsw () As Long Gets the current PSW.

Function Get ShadowByte ByVal
address As Long, spacex As Integer

Gets a byte from ShadowRam.

Function Get ShadowWord ByVal
address As Long, spacex As Integer

Gets a word from ShadowRam.

Function GetSp () As Long Gets the current stack pointer value.

Function GetWord ByVal address As
Long, spacex As Integer

Gets a word from data memory.

EMUL51XA™-PC Chapter 2: Emulator Macro User Guide

Copyright © 1998 ICE Technology 55

SUBROUTINE DESCRIPTION

Sub Go_ () Starts executing the emulator at the current
address.

Sub GoToBP () Starts executing the emulator from the
current address and waits until a breakpoint
occurs.

Sub LoadCode (codefilename As String) Loads a Program for emulation.

Sub LoadProject (pname As String) Loads an emulator project setup file.

Sub ModuleSelect (module As String) Selects a new module in the current
Program.

Sub PutByte ByVal address As Long,
byte, spacex As Integer

Writes a byte into the data memory.

Sub PutDWord ByVal address As Long,
ByVal dwrd As Long, spacex As Integer

Writes a long or double word into data
memory.

Sub PutPc (ByVal address As Long) Sets a new value in the Program counter.

Sub PutPsw (ByVal pswreg As Long) Sets a new value in the PSW.

Sub PutSp (ByVal address As Long) Sets a new value in the stack pointer.

Sub PutWord ByVal address As Long,
ByVal wrd, spacex As Integer

Writes a word into data memory.

Sub RePaint () Redisplays everything in the emulator main
window.

Sub SaveTraceText (filename As String,
startframe As Integer, stopframe As
Integer)

Save the current trace from the “startframe”
number to the “stopframe” number into the
file name specified as a text file.

Copyright © 1998 ICE Technology

Chapter 2: Emulator Macro User Guide EMUL51XA™-PC

56

Sub SetAddress (address As Long) Sets an address in all windows that can
have an address setting. The correct
window must be made active with Window
Select.

Sub setBpAtAdr (ByVal address As
Long)

Sets a breakpoint at the requested address.

Sub SetBpAtLine (ByVal lineno As
Integer)

Sets a breakpoint at the requested line
number.

Sub SetTrigger (ByVal trignun As
Integer, ByVal active As Integer)

Make the trigger “1,2,3, or filter” active or
inactive.

Sub StepInto () Executes one instruction, including a jump
instruction.

Sub StepOver () Executes one instruction or all the
instructions in a subroutine.

Function Sym (Symname As String) As
Long

Gets numeric value of a symbol.

Sub WaitUntilReady () Wait for the emulator to become READY.

Sub WindowSelect (number As Integer) Activate one of the current child windows,
e.g., Data window, by the number on the
Window pop-up menu.

EMUL51XA™-PC Chapter 3: Emulator Board

Copyright © 1998 ICE Technology 57

Chapter 3: Emulator Board

EMUL/LC-ISA Emulator Board

JP1 P
W

R

NOHAU CORP.
EMUL/LC-ISA
S/N

J1

A3 A9

RP1

JP
2

Figure 28: EMUL/LC-ISA Emulator Board

The EMUL/LC-ISA board is an 8-bit PC Card that fits into any slot. The jumpers
on the emulator board control three things: (1) the address used to
communicate with the Host PC, (2) the maximum PC clock communication rate
to the target, and (3) whether or not power is provided to the target through the
LC connector. These are all described in more detail below.

Note: The power jumper J2 should be left in for EMUL51XA-PC users.
Existing users of the ¾ length, 16-bit emulator cards can
use these in place of the EMUL/LC-ISA card.

Chapter 3: Emulator Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

58

Detailed Installation Instructions

Setting the I/O address jumpers—J1

Note: The factory default is 0x200 for the software and hardware.

The EMUL/LC-ISA requires 8 consecutive I/O addresses from the PC’s I/O
address space (0 Hex -- 3FF Hex) that begin on an address that is a multiple of
8. Set the emulator board address using the jumpers in header J1. These
addresses must not conflict with any other I/O device.

Each pair of pins in J1 represents one bit in the 10-bit address. Address bits 0,
1, and 2 represent addresses within the 8 consecutive addresses and do not
have pin pairs to represent them. This leaves 7 address bits (pin pairs) to set
with jumpers. Shorting pins represents a 0 in the address. A pair of pins with no
jumper represents a 1. Below are four examples where the Least Significant Bit
(LSB) is on the left, as it is on the board if you are holding the board so you can
read the silk-screened labels, with the 25-pin D connector on the right.

200 HexPC Bus Address
Pin labels

Jumper Settings

A3 A9
208 Hex

A3 A9
300 HexPC Bus Address

Pin labels

Jumper Settings

A3 A9
3F8 Hex

A3 A9

Factory Default

Figure 29: Emulator Header J1

Setting the Target Communication Rate – Header JP1

The PC’s system clock is divided by moving the jumper on JP1.

Set the fixed synchronous communication rate by using Figure 30 to look up
the clock rate in the lower row and place one jumper on the header JP1,

EMUL51XA™-PC Chapter 3: Emulator Board

Copyright © 1998 ICE Technology 59

between the pins indicated in the upper row. There must be only ONE jumper
on this header.

Figure 30: Header JP1

Note: The pins on JP1 are not numbered on the board. The picture
above shows the orientation of JP1 as it appears on the emulator
board. Both pin 1 holes are shown as a square, as they are on
the emulator board.

Communication Rate Jumper

The communication rate jumper MUST be set in positions 3, 4.

The PWR Header – JP2

Note: Leave this jumper in place.

With the jumper in place, +5 volts are supplied from the PC’s power supply
through the LC connector, up to .5 amps.

Power Supply to Pod/Target

The power supply to the pod/target is controlled by jumper(s) on the pod boards.
See Chapter 5: Pod Boards, or refer to specific chapters on pods 51XA/G3/I
and 51XA/G3/E.

Chapter 3: Emulator Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

60

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 61

Chapter 4: Internal/External Data Trace Board

EMUL51XA-PC needs RAM to record a history of the data used and instructions
executed. The trace board contains this RAM, and the pod board has the logic
and connectors necessary to support a trace board. The IETR card includes 128
bits of RAM for each trace record. Trace boards are available in two trace
depths: 128K or 512K. It supports both 5.0 VDC and 3.3 VDC low-voltage
operation (See VCC option in Trace Setup screen.).

Detailed Installation Instructions

There are three configuration settings related to the hardware that must be set
correctly before the trace board can be used. Two are found in the upper-left
corner of the Config / Trace dialog box.

If one is installed, click on the Yes button next to Board installed: . The I/O
address may be left at the default, 208.

Finally, if running 3.3 VDC target select, correct target VCC: 3.3 VDC (See
Figure 48).

Trace Board Power Jumper

The power jumper is located between the DB15 and the battery eliminator
connector. The jumper’s name and function are different on rev C and rev D
trace boards.

Rev C: U1 (three pin)

External power default: jumper positioned away from edge of board

Internal power: jumper positioned closest to edge of board

Rev D: JP1 (two pin)

External power default: jumper not installed

Internal power: jumper installed

Note: External power is recommended.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

62

External Inputs and Controls

The Trace board records eight external digital inputs with every frame. These
signals are input through the 15-pin D connector. Additionally eight digital inputs
are recorded from JP15 Pod inputs.

The trace sampling resolution can be at the bus or clock frequency, depending
on the selection Recording per clock in the Trace Setup screen.

VCC

TRIGGER IN

TRIGGER OUT

3
2

6
8

12
13

11

1
5

7

9

4

10

Grey (Ground)

Green-White

Red-White

Clip colors:

10K

Bit 4Yellow

Bit 1Brown

Bit 2Red

Bit 3Orange

Bit 5Green

Bit 0Black

Bit 6Blue

Bit 7Violet

14
15

VCC

GND

Figure 31: Trace Board Connectors

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 63

Two of the microclips duplicate the trigger controls found in the SMB
connectors: TRIGGER IN is inverted. TRIGGER OUT goes HIGH for the
duration of a valid trigger approximately 250ns using a 20 Mhz clock.

The TRIGGER IN microclip can prevent triggering when this line is held low and
Trig Inhib selected. As long as this line is held low, the Last trig event repeat
count will not count down, the events that satisfy the trigger conditions will not
cause a trigger, and trace recording will not stop. See Figure 48 and text for
further discussion.

Introduction to Tracing

A trace history is a time ordered recording of bus or clock cycles (with some
other helpful information). Events that do not affect the CPU internal or external
bus, such as testing a CPU internal data register, will not get recorded. By
default, with no filter or triggers defined, all external and internal bus activity is
recorded. All tracing emulators record bus events and not actual instruction
execution, so they all must have some way to deal with the effects of the
instruction pipeline. The trace board for EMUL51XA-PC includes pipeline
decoding and marks opcode fetches that are not executed. As a result, the
display software can show the trace records as though the pipeline did not exist,
but it can also display the uncorrected bus cycles just as they were recorded.

Tracing starts automatically every time emulation starts. Even single-stepping
will turn on the trace recording during that step. Clicking on the Trace button or
pressing the F10 key will also start recording (but until emulation starts, there will
be nothing to record). Once trace recording has started, the Trace button
changes to the Stop button, and will stop recording when clicked. The trace
buffer will continue to collect records until recording is stopped, either by a
trigger, by stopping emulation, by pressing the F10 key, or by clicking on the
Stop button.

When Filter is enabled, every bus cycle is examined to see if it meets the
conditions in the Filter: field of the Trace Setup dialog box. If it does not, that
bus cycle will not be recorded in the trace buffer. Bus cycles that are not the
correct type (opcode fetch, data read, or data write), or that fall outside the
address range(s) specified in the Filter: field, will be examined to see if they
meet any trigger conditions but will not be added to the buffer.

Every time tracing starts the buffer is cleared. After recording a single step, the
trace buffer will only contain the records for that one instruction or source line.
As long as trace recording continues, records will be added to the buffer. Once
the buffer is full, the new records will begin to overwrite the oldest records. The
trace buffer is a ring buffer that will continue to collect new records and replace

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

64

old records until recording is stopped. Triggers without an address qualifier will
be made inactive.

Triggers and Hardware breakpoints

The trace board can do more than just record what happens on the controller
bus. A "trigger" can occur when certain conditions on the bus are met. For
example, you can Program a trigger to occur when the instruction at 4FE Hex
has been executed for the fourth time. Triggers can start and stop trace buffer
recording, and can cause hardware breakpoints. These are useful if you are
executing out of ROM or need to break on certain hardware conditions. For
information about how to create triggers and hardware breakpoints, see
Triggers on page 39.

Trace Window

The contents of the trace buffer are displayed in the Trace window. If there is
no Trace window open, you may open one using the Window menu item and
selecting Open a new trace buffer window. Most of the Trace window features
are controlled by the trace menu, and are described in the Trace Menu section
below. Please refer to both this section and the Trace Menu section for a
complete description of the Trace window.

Pipeline Effects

When a jump occurs and the pipeline is flushed, some instructions are fetched
but not executed. These fetched but ignored instructions are captured by the
trace board when they are fetched, but the display software will not assemble
them.

Bus Cycle Order

All bus cycles are shown in the order fetched, not in the order executed. The
Trace window shows the executed fetches, with the last row possibly showing
only fetched, not executed, instructions.

Bus Width

The trace buffer always records 16 bits of data for each bus cycle even though
the other 8 bits may be ignored by the CPU.

Bus width is determined by the BUSW pin target connection, and cannot be set
with software change to the BCR registers. See chapters 6 and 7 for further
discussion under BUSWIDTH headers.

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 65

Trace Menu

Like the other window-specific menus, the Trace
menu only appears when the trace window is
selected. The Trace menu contains items that
control how the trace is displayed.

Find frame number ..

When this menu item is selected, it opens a
dialog box to get the desired frame number.
Once the trace buffer has records, this menu
item scrolls the trace window to the record
entered in the dialog box.

Search Address

This menu item opens a dialog box, shown in Figure 32, to get the desired
address, then searches from the beginning in the frame buffer for the first
record that contains the specified address.

Figure 32: Trace Search Dialog Box

By default, the search includes only opcodes and starts at the first (oldest)
frame in the buffer (not necessarily frame 0). By selecting options in the dialog
box, you can choose the search direction and limit the search to only certain
kinds of bus cycles.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

66

Search Next Address

From the current frame, this menu item searches forward for the next
occurrence of the last address searched. If a search has not yet been specified,
no frame will be found.

Search Previous Address

From the current frame, this menu item searches backward for the next
occurrence of the last address searched. If a search has not yet been specified,
no frame will be found.

Find Trig point

This menu item will scroll the Trace buffer window to show frame 0, which is the
trigger point.

Zero time at cursor

<CTRL>Z causes the selected absolute time stamp frame to be zeroed.

Save trace as text ..

You can save any portion of the trace buffer to a text file suitable for inclusion in
documents or processing with text manipulation or word processing tools.
Selecting this menu item will open a dialog box that lets you set a range of
frame and the name of the file where the text goes.

The file text will be formatted in the same manner and with the same options as
the text in the Trace buffer window. If you want the text file to include time
stamps, arrange for the Trace buffer window to show them as well.

Compress/Uncompress

The Compress option post-processes the trace buffer information, discarding all
unexecuted prefetches after branching institutions and code fetches of
multiword op codes beyond the initial word fetch. This makes the trace display
more readable and the saved trace text files smaller in length. The Compress
option is also useful when verifying code-thread execution for FAA and FDA
certifications. Make sure you save the compressed display as an ASCII text file.

Note the difference between uncompressed and compressed displays in Figure
33 and Figure 34:

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 67

Figure 33: Internal and external uncompressed bus display
using 8-bit wide external code memory

Bus Cycle Trace Annotation

Figure 33 contains keys to the bus cycle type and length in bytes. A number
follows to indicate the number of bytes for the read, write, or opcode fetch
cycle:

w1 for one-byte write cycle

r1 for one-byte read cycle (not shown in example)

os2 16-bit fetch with start-of- instruction on an EVEN address

so2 16-bit fetch with start-of-instruction on an ODD address

ss2 16-bit fetch with start-of-instruction on ODD and EVEN addresses
(not shown, but could be two sequential NOPs)

s1 8-bit fetch start-of-instruction

so1 8-bit start-of-instruction on ODD address

Observe that this program runs in internal 16-bit wide code memory to address
8000, or 32KB, the current internal code memory ROM size selected when
initializing the XA bondout in the EMUL_INI configuration screen, and thereafter
runs in 8-bit wide memory (requires inserting JP4 buswidth jumper on the pod
when running standalone without target board).

Figure 35 shows the same program running in 16-bit wide external code
memory.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

68

Figure 34: Internal and external compressed bus display using 8-
bit wide external code memory

Show Internal Bus

This display shows all code that executes in internal code RAM under separate
columns.

Show External Bus

This display shows external code and read/write bus cycles under separate
columns.

Figure 35: Internal and external bus in compressed format using
16-bit wide external code memory

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 69

Note: This sample code executes in internal code RAM until crossing
the 32KB boundary to external EPROM at 8000H. Here, both
Show options have been selected.

Show misc data

Figure 36: Miscellaneous External Data Display

Selecting this menu item will display another 32 bits for each record. The
leftmost word records external signal lines from the DB15 connector, and 8
signals on the TRACE header on the pod. The remaining byte and word are
used by Support and Engineering.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

70

Show pod pins 7..0

Figure 37: Vertical logic analyzer type display
of digital I/O signals connected to Pod JP15

Note: Vertical display of POD Trace Jumper Signals are shown here
with bits 7-1 high, and bit 0 low.

Show time stamp

The time stamp is not always displayed. By default, to reduce the size of the
Trace window, time stamps are not shown. To see the time stamp, select this
menu item.

Benchmarking Using Time stamp

When you have captured a trace and are looking at the time stamp information,
keep in mind that the time stamp reflects fetch activity. Therefore, do not try to
look at the time stamp for an individual instruction to determine the execution
time. For example, if you want to know how long it will take to execute a multiply
instruction, type in 10 multiply instructions in the Program Window. Then, type
in a jump instruction to the start of the multiply sequence. Executing this
sequence and looking at the trace result will let you determine the execution
time by comparing the time the first byte of a multiply instruction was fetched to
the time the first byte of the subsequent multiply instruction was fetched.

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 71

Relative time stamp

The time stamp is a 40-bit integer which is large enough to uniquely number all
clock cycles in a 15.27-hour period running at 20.0 MHz. The default display
mode for the time stamp is to show the cumulative time since (or before) the
trigger. To see the delay between individual instructions or bus cycles, select
this menu item.

In Figure 38 the JMP 8000 instruction takes 650 ns, 2 NOPs 200 ns, in external
memory and 150 ns in internal code memory (20 MHz clock).

Figure 38: Example of relative time stamp displayed in seconds

Convert cycles to time

The actual time stamp in the trace record is a count of clock cycles. When this
menu item is checked, the time stamp is displayed in seconds (or fractions
thereof) as shown in Figure 38. It uses the value in the Clock field of the Trace
Setup dialog box to convert the cycle count to time. If the value in the Clock
field is incorrect, these time stamps will be incorrect also. When unchecked, the
Trace window displays the time stamp in clock cycles.

Synchronize Program window
(to C source and Program Disassembly)

When this menu item is checked, as you move the cursor around the Trace
window from opcode cycle to opcode cycle, the cursors in the Program and
Source windows will also move to point to the instruction fetched and it's
context. If the application is running, only the Source window will scroll. This
would normally always be enabled.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

72

Trace setup ..

Selecting this menu item, just like selecting the Trace.. menu item in the Config
menu, opens the Trace Setup dialog box. The details of that dialog box are
described in the following paragraphs.

Toggle trace (stop/trace)

If the trace board is recording cycles, this menu item will turn off cycle recording.
Conversely, selecting this menu item before the trace board has started or after
a trigger has occurred will turn on recording, just like clicking on the Trace
button. The F10 key also toggles between Stop and Trace.

Trace Setup Dialog Box

Board Installed

The box next to Yes must be marked before the trace board will be used. If this
box is marked and the board is not there or the starting I/O address is not set
correctly when the application is started, the Trace Setup dialog box will be
opened automatically. If the board is installed and the No box is checked, the
application will execute normally, however you will not see Shadow RAM update
or Trace data.

Address

The I/O Address field is the field that identifies the start of the trace board I/O
addresses. This is ignored with IETR traces.

Trace Memory

This box, shown in Figure 39, displays the number of records that can be stored
in the trace board. This field is set automatically whenever the emulator and
trace board are reset.

Figure 39: Size of Trace Memory

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 73

Trigger Memory/Trigger Memory Mapping

Figure 40: Trace and Code Coverage Memory Mapping

The trace memory must be mapped to cover the code and date address range
of interest not only for tracing but the memory coverage function as well.
Generally the default 0-256KB will suffice. Very large Programs could take
advantage of the IETR 512 trace, which covers memory addresses in 1MB
increments.

Triggers

Please refer to Figure 41 for the following discussion.

A trigger is an event that occurs once for each time the trace recording is
started. There are two ways to set up triggers and bus cycle filtering:Normal
mode and Window mode. In Normal mode more control is given to triggers. A
trigger in Normal mode either stops recording or starts the countdown until
recording will be stopped and can cause a hardware break. (frame 0 is always
the frame where the trigger occurred.) In Window filtering mode, more control
is given to controlling which bus cycles are recorded. Each mode is described in
more detail below.

The field labeled Post trigger samples contains the number of frame, bus
cycles or crystal clocks to be recorded after the trigger occurs. Once the trigger
occurs, recording continues until the number of samples recorded is equal to the
number in this field. If it is set to 0, no cycles will be recorded after the trigger
occurs. If it is set to 10, then 10 cycles will be recorded after the trigger occurs.
If it is set to the total buffer size, then frame 0 will always be the first frame in
the buffer.

Note: If the trace is configured to break execution when the trigger
occurs, the Post trigger samples field is not used because
recording will stop when execution stops. If the Yes, on trace
stop box is checked, then this field controls when the break will
occur.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998ICE Technology

EMUL51XA™-PC

74

The Last trigger repeat count field contains the number of times the highest
numbered trigger condition must be met before the trigger occurs. If a trigger
condition is set for an opcode execution at address 400 and the Last trigger
repeat count is set to 10, the first 9 fetches from address 400 will be counted
and the trigger will occur when that opcode executes for the 10th time.

This count may be as high as 256.

Filter Mode: Normal

Using the Normal filter mode, you can set up 3 trigger conditions. Each trigger
condition is a series of statements that are OR'ed together logically. Each
statement contains one address range and one type of bus cycle.
Approximately 2000 statements may be used in each trigger condition. The
three triggers conditions are tested sequentially: once the conditions for trigger
1 are met, the conditions for trigger 2 (if present) are tested. If there are no
trigger 2 conditions, then all the conditions are satisfied and the trigger occurs.
and likewise for trigger 3. See Figure 44 and Figure 45 for information about
setting and changing the trigger conditions.

Figure 41 shows that trigger 1 has one condition and it will be met by executing
function check_timer. Then after 1,000 more bus samples, the trace capture
stops. The prior 130,000 samples remain.

Figure 41: Trigger on anything

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 75

With Filter mode: Normal, bus cycles are recorded until a trigger stops the
recording. Recording bus cycles is a separate activity from deciding to trigger or
not, and so it has a separate set of conditions. The Filter: field can contain up
to 2000 statements that are logically OR'ed to decide whether to record the bus
cycle or not. In Figure 42, the trace board will record everything from the start of
main to MAIN + 100H, the opcode fetches between line 93 and 100 from the
module TIME, and only the data bus cycles (read and write cycles) to and from
address timer.sec (14CH)

Figure 42: Selective Recording

Note: Trigger events are sequential: Trig 1, then Trig 2, then Trig 3. Trig
2 (or Trig 3), by itself, will never occur without Trig 1 (or Trig 1
and Trig 2) being active.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

76

Filter Mode: Window

Figure 43: Filter Mode Window

Using the Window filtering mode gives a different kind of control over what
cycles are recorded, and can selectively record program threads in a way that
record filtering cannot. Like trigger conditions, the Enable recording and
Disable recording conditions are set using the editor described below, and
each condition is logically OR'ed with all other conditions to find a match. Bus
cycle recording will start when the Enable recording conditions are met, and
will stop when the Disable recording conditions are met. Once recording has
started, the conditions in the Filter field can further qualify captured cycles.

Editing the Trigger Conditions

To set up the trigger conditions, click on one of the trigger addresses and select
New or Edit. This will open an Address qualifier window like the one in Figure
44. The Start: field will be selected. Type the address range start (either a
hexadecimal number or a symbol name), hit <TAB> to get to the End: field (or
click on it), type the upper limit of the address range, and then click on one of
the types of cycles. Figure 44 shows how to trigger on C source line 61 in
module time.c by putting that address in both the Start: and End: range fields.

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 77

Note: When in data mode, care must be taken to specify the address of
a structure or array member by using the C character &, e.g., &
timer.sec. Single variables, e.g., ticks, are generally interpreted
correctly according to context. The expression evaluator will slow
the resultant hex address in brackets, e.g., & timer.sec [14C-
14C].

Figure 44: Data mode = Opcode

By default the Data mode field has the Opcode box marked. Marking the Data
box gives you the options shown in Figure 45.

Figure 45: Data mode = Data

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

78

Note: Changing the Data mode for one trigger also changes the Data
mode for all other triggers. After changing the Data mode, review
all the conditions for all triggers to make sure they are still correct.

When this dialog box contains the desired address range and the Cycles: field
has the correct button selected, either press the <Enter> key or click on the OK
button. Each trigger event can have approximately 2000 conditions.

We also want to qualify the value on the data bus. To do this, click on the Data
Diamond and enter low and high values of the variable in question. If we
wanted to trigger on a write to ticks when it reached 50H, we would use 50
twice. The data mask may remain at FFFF in this case, because ticks is of type
INT and occupies an entire word. Character variables, however, will require
masking either the lower or upper byte with 00FF (ignore upper byte), or FF00
(ignore lower byte). A write of 12H to location 6201H would display as “6200
12xx—w2” in the trace display, where xx could be any value. A correct data
mask would then be FF00, such that the mask AND-ed with 12xx would result in
a trigger on data value of 12H.

Figure 46: Data Bus Qualifier Entry

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 79

Read Cycle includes MOVC

MOVC operands may be treated as data-read cycles by checking this option in
the Trace Setup screen. Figure 47 illustrates triggering on a word read from
code memory location 7FFA. The MOVC can trigger from any code-memory
address, as this bus is always visible with the XA bondout chip.

Figure 47: Triggering on MOVC read cycle with IETR

See Figure 48 for the following discussion.

Break Emulation? Box

A trigger can cause a hardware break either when the trigger occurs or when
recording stops, after the Post trigger samples frame have been recorded.
Mark either box (or both). This feature means you can set breakpoints "on-the-
fly".

Note: There may be a delay of up to 3 instructions between the trigger
that causes a break and when the break actually occurs.

Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology

EMUL51XA™-PC

80

Figure 48: Trace Setup Options for On-the-fly Breakpoints and Sampling Interval

 Recording per clock

This IETR can record either on every bus cycle (default), or on every clock
cycle, by checking the Recording per clock box. This finer resolution may be
useful to hardware designers, however it will reduce the number of unique
cycles due to the extra code read cycle duration (see BTRL register).

Last trig event repeat count

The last trig event repeat count defaults to 1. It refers to the number of times the
last active trigger condition occurs before starting the post trigger sample
countdown. If you had only one trigger and the repeat count is 5, then on the
fifth trigger match the trace would stop Post Trigger samples later.

Note: If you defined two sequential triggers, Trig1 then Trig2, the logic
would be Trig = trig1, then (trig2 Repeat Count Times.) The
repeat count applies only to the last ACTIVE trig condition, be it
1, 2, or 3.

Post trigger samples

This number decrements by every clock or bus cycle to zero after a valid trigger,
then the trace stops capturing data (or breaks, if Break emulation? Yes was
selected).

EMUL51XA™-PC Chapter 4: Internal/External Data Trace Board

Copyright © 1998 ICE Technology 81

Internal bus/External bus

The Post trigger samples counted may be only Internal Code bus activity,
External bus activity, or both. This is determined by checking Internal bus,
External bus, or both boxes. If all code executes from external FLASH or
EPROM, check only External bus. Similarly, when running in single-chip mode,
check Internal bus. If your design has both internal code and an external bus,
you would want to check both.

External trig line

This refers to the /Trigger_IN or J4 SMB connector at the edge of the IETR
board. This signal is active LOW. Checking Trig Inhib prevents valid triggers
from triggering when a LOW is presented by your external hardware on J4. This
should be the default check box during most of the debug session, i.e., you
normally want triggers to take effect without requiring an active LOW on trig_in.
Trig = Trig_in AND (trig1, then trig2, then trig3).

Trig, on the other hand, does just the opposite. This requires an active LOW to
trigger, i.e., Trig = /Trig_in AND (trig1, then trig2, then trig3).

Target VCC

If running a low-voltage target, select 3.3 volt versus the default 5.5-volt DC.

EMUL51XA™-PC Chapter 5: Pod Boards

Copyright © 1998 ICE Technology 83

Chapter 5: Pod Boards

Features Common to All Pods

Every pod is a fully functional, stand-alone board, with a processor, RAM, a
crystal, PROM, and logic to glue all those pieces together.

How It Works

Clicking on the Reset button tells the emulator to pull the RST line low, resetting
the controller. When the RST line is released, the controller begins by executing
instructions that allow the emulator board to communicate with the pod. These
instructions are the monitor code. The controller will continue to execute monitor
code until you click on the Step or GO button from the Run menu.

When sections of memory are displayed on your screen, it is the controller that
actually reads the memory locations and sends the values back to the emulator
board in your PC. With crystal jumped to your target and data memory mapped
to target, those resources must be active if the POD is to function.

Indicator Lights

The pod boards contain three lights. They are labeled READY, RESET, and RUN.
The red RESET light will only be lit when the emulator resets the controller. The
green RUN light will be lit whenever the controller is executing user code (as
opposed to monitor code). The amber READY light indicates the status of the
WAIT line during external data reads and writes.

Trace Input Pins

Next to the indicator lights and the test point is an array of 8 pins labeled
TRACE. These pins may be connected to any logic signal and will record the
state of that signal with every trace record. Pins 0 through 3 are sampled on the
falling edge of ALE, with the address. Pins 4 through 7 are sampled on the
rising edge of the RD/WR strobes, with the data. For more information about
displaying these bits and Trig-In/Trig-Out, please see pages 62 and 68.

Chapter 5: Pod Boards EMUL51XA™-PC

Copyright © 1998 ICE Technology84

Duplicate Resources

The pod board has many resources and your target may also have the same
resources. If the same resource appears on both the target and the pod board,
there may be a conflict that will prevent correct emulation. The only way to avoid
this conflict is to remove or disable either the target or the pod resource for all
the resources that appear on both.

Running the pod standalone permits C source debugging but without target I/O.
However, the real value of an ICE is to run your development/target board
transparently, just as if the actual XA chip was in its socket. For this you will
need to change the crystal jumpers from POD to TARGET, remove the PWR
jumper (target provides power to the BONDOUT chip), and plug into the target
board XA socket.

Note: PODS support 3.3 VDC by removing the PWR jumper to use low-
voltage target power.

The POD-51XA/G3 also includes a MAX232 chip that supports both UART
ports. Should you desire to use the on-pod MAX232, insert one or both RXD
jumpers (JP13 and JP14) and connect your terminal directly to the J1 or J2 on-
pod UART port connections.

EMUL51XA-PC uses a special "bondout" controller to emulate the P51XAG3.
This special chip has extra pins that give the emulator extra features. The
bondout controller can map memory, halt execution, set breakpoints, etc. This is
why your Program must execute in the controller on the pod and not in the
controller on your target board.

In summary:

RESOURCE: WHAT TO DO WHEN THE TARGET HAS IT:

RAM Map the RAM to the Target (see Software
Chapter)

Crystal Move JP1 and JP2 to “TARGET” side of header

Serial Port(s) Do not use J1 or J2; remove RXD jumpers J13 or
J14.

Power Supply Remove the jumper from the PWR header

The black wire with the microclip is a ground wire, which is helpful for ensuring
that the pod and target grounds are at the same potential. We recommend you

EMUL51XA™-PC Chapter 5: Pod Boards

Copyright © 1998 ICE Technology 85

attach this clip to a grounded point on your target before attaching the pod to
the target.

There is no collision of RAM or crystal if you use the POD resources. If you use
the POD crystal, you should replace it with the exact frequency used by the
target.

EMUL51XA™-PC Chapter 6: POD-51XA/G3/I

Copyright © 1998 ICE Technology 87

Chapter 6: POD-51XA/G3/I

Introduction

This pod board contains a Philip's P51XAG3 bondout microcontroller chip
(suitable for emulating the Philip's 80C51XA), a 16/20/25/30 MHz crystal, 128 or
512 kilobytes emulation RAM for instructions and 128 or 512 kilobytes for data,
circuits for driving the bus cable, and two large FPGA chips. Low-voltage 3.3
VDC is supported by using target power (remove JP16 PWR jumper).

Adapter
Orientation

(insert on bottom)

Pin 1

1 in.

2.5 cm.

1 in.
2.5 cm.

5.5 in. (14 cm.)

4 in. (10.1 cm.)

NOHAU CORP. POD-XA/G3/I

44 pin PGA connector is
used with a 44 pin PGA
to 44 pin PLCC
requiring one inch of
space above the

J1 J2

JP21
JP4

JP17
JP18

JP19
JP13

JP14
JP20

JP3

JP16

JP5

JP12

JP1

JP2

TXD0
RXD0
GND

TXD1
RXD1
GND

JP15 TRACE

0 7

512K

128K

RXD0
I/O port

RXD1
RESET

PWR

EA/WAIT

TOP VIEW

Figure 49: POD-51XA/G3/I

You must configure the software to match the hardware jumper configuration for
data bus width and number of address lines.

If you use 16-bit data bus, you must have 20 bits of address. Again, the
software setup must match this setting.

Chapter 6: POD-51XA/G3/I EMUL51XA™-PC

Copyright © 1998 ICE Technology88

Dimensions

The pod board itself is 5.5 inches by 4 inches (14 cm. by 10.1 cm). The pod
requires one inch (2.5 cm) of space above the target.

The location and dimensions of the 44-pin PGA connector is shown in ": POD-
51XA/G3/I". This 44-pin PGA connector is attached to a 44-pin PGA to PLCC
adapter. The dimensions of the 44-pin PGA to PLCC adapter are shown in
Figure 50.

.50 in.

12.72 mm.

.75 in.

19.05 mm.

1.20 in.

30.5 mm.

Adapter Disconnected

Adapter Connected

Figure 50: Adapter Dimensions

Emulation Memory

The microcontroller can directly address 128K bytes of code memory and 128K
bytes of data memory. If target designs require larger memory size, a pod with
512K bytes of code memory and 512K bytes of data memory is available. Email
technical suppor for information about ordering a 512K-byte pod at

 support@icetech.com.

EMUL51XA™-PC Chapter 6: POD-51XA/G3/I

Copyright © 1998 ICE Technology 89

Headers

In Figure 49, all the headers are shown with their jumpers in the factory-default
positions. When shipped from the factory, all jumpers are in place for stand-
alone operation (without a target) running code from internal code memory after
reset, and 20 bits of address and 16 bits of data. When you connect the pod to
a target, be sure to examine all jumpers and make sure that they are all
correctly placed.

Clock Headers (JP1 and JP2)

These two headers each have two jumper positions: TARGET and POD. When
set in the TARGET position, the pod controller will receive the clock signal from
the target crystal. With both in the POD position, the bondout controller on the
pod will use the oscillator on the pod. It is important to use a 50 percent duty-
cycle crystal/oscillator.

Note: When the clock jumpers are in the POD position, the XTAL1 and
XTAL2 signals from the pod are disconnected from the target.

PWR Header (JP16)

Remove this jumper when the target has its own power supply. With this jumper
in place, the target may get 5.0 VDC from the pod as long as the current
requirement is less than 0.5 amps. Higher currents will cause a significant
voltage drop along the current path and the pod may also be damaged. Remove
this jumper for 3.3 VDC low-voltage operation.

Warning: Always turn on the PC before applying power to the target. Always turn off
the target power before turning off the PC power.

RXD Headers (JP13 and JP14)

If your target outputs debugging information on the serial port, you may wish to
connect an RS232 device like a terminal or a PC. This pod includes a MAX232
chip to convert the signal levels from RS232 to TTL levels. The MAX232 chip
will drive the serial port input pin on the controller if you place a jumper on either
RXD header. To keep the MAX232 chip from driving the serial input pin on the
controller, remove the jumper on the RXD header.

The labels TXD1/RXD1 at J1are for serial port 0. The labels TXD2/RXD2 at J2
are for serial port 1.

Chapter 6: POD-51XA/G3/I EMUL51XA™-PC

Copyright © 1998 ICE Technology90

Note: The Rev A & Rev B pods do not bring TXD1/RXD1 to J2.

Trace (JP15)

These eight pins can be used to monitor any eight logic signals on your target
board. They are displayed in the Trace menu as TR0..TR7 where TR0 is
closest to the JP15 label and TR7 is closest to the RAM Select jumper (JP21).

Reset Header (JP20)

Occasionally, a target may contain an external device designed to reset the
controller by pulling the RST pin low. During debugging, that may be
inconvenient. The signal from the target RST pin passes through the RST header.
Removing the RST jumper will prevent the external device from resetting the pod
controller.

EA/WAIT Header (JP3)

This header has two jumper positions: POD and TARGET. When the pod
operates in stand-alone mode (without a target), the jumper should be set in
POD position. The pod will provide the EA/WAIT signal to the on-pod controller.
When the pod is connected to the target, the jumper should be set in the
TARGET position. The target EA/WAIT signal passes through this header.

BUSWIDTH Header (JP4)

When this pod operates in stand-alone mode (without a target), using a jumper
on this header will make the pod controller run with 8 bits-wide data bus.
Removing this jumper will make the pod controller run with 16 bits-wide data
bus. When the pod is connected to a target, this header should be removed.
The target BUSW signal will pass to the pod controller.

Note: This pod does not support user Programs that can override the
buswidth setting by writing to the Bus Configuration Register
(BCR). The buswidth is determined by the value of the BUSW pin
when Reset is released.

I/O PORT Header (JP19)

If all pins on P0, P1 and P3 are used as I/O, place a jumper on JP19.
Otherwise, remove this jumper. This helps the pod to recognize the signals on
P3.6 and P3.7 as I/O, instead of WR, RD.

EMUL51XA™-PC Chapter 6: POD-51XA/G3/I

Copyright © 1998 ICE Technology 91

12/16-BIT and 12-BIT Headers (JP17 and JP18)

These two headers determine how many address lines the pod controller is
using.

12/16-BIT 12-BIT NUMBER OF ADDRESS LINES

ON ON 12

ON OFF 16

OFF OFF 20

Note: This pod does not support user Programs that can override the
setting of the number of address lines by writing to the Bus
Configuration Register (BCR).

A12-A19 Headers (JP5-JP12)

By setting the 12/16BIT and 12BIT headers, the number of address lines is
determined. The next step is to set the A12-A19 headers which each have two
positions: P2.x and GND. Set these headers according to the following table:

NO. OF
ADDRESS

LINES

A12 A13 A14 A15 A16 A17 A18 A19

12 GND GND GND GND GND GND GND GND

16 P2.0 P2.1 P2.2 P2.3 GND GND GND GND

20 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

RAM Select Header (JP21)

This header has two jumper positions: 128K and 512K. When the pod has 128K
code memory and 128K data memory, set this jumper to the 128K position.
When the pod has 512K code memory and 51K data memory, set this jumper to
the 512K position.

Note: This jumper is set when the pod is manufactured and should not
need to be changed by the user.

Chapter 6: POD-51XA/G3/I EMUL51XA™-PC

Copyright © 1998 ICE Technology92

Features and Limitations

The POD-51XA/G3/I is designed to be used for internal mode, i.e., the /EA is
HIGH during reset.

The emulator will use six bytes of stack space in large memory model (four
bytes small model), so add this to your stack size calculation to avoid a stack
overflow exception at 0080H.

Emulation Memory

256K pod: 128K code and 128K data memory

1M pod: 512K code and 512K data memory

Software breakpoints

Wherever there is write-able RAM.

Hardware breakpoints

1) All code addresses, one instruction skid.

256K pod : 128K hardware breakpoints

 1M pod : 128K hardware breakpoints

2) External data read / write addresses with 16 byte resolution

Operation frequency

1) 0.5M to 25M without wait states in 16 bit mode, i.e. any values for CR1,
CR0, CRA1, CRA0 in BTRL, and any values for DW1, DW0, DWA1, DWA0,
DR1, DR0, DRA1, DRA0 in BTRH.

2) 25M to 30M with one wait state in 16 bit mode, i.e. CR1, CR0 equal 00, or
CRA1, CRA0 equal 00 in BTRL, or DW1, DW0 equal 00, or DWA1, DWA0
equal 00, or DR1, DR0 equal 00, or DRA1, DRA0 equal 00 in BTRH are not
supported (see below).

3) 0.5M to 30M with one wait state in 8-bit mode, i.e. CR1, CR0 equal 00, or
CRA1, CRA0 equal 00 in BTRL, or DW1, DW0 equal 00, or DWA1, DWA0

EMUL51XA™-PC Chapter 6: POD-51XA/G3/I

Copyright © 1998 ICE Technology 93

equal 00, or DR1, DR0 equal 00, or DRA1, DRA0 equal b00 in BTRH are
not supported (see below).

External Bus Signal Timing Configuration

CR1,CR0 CRA1,

CRA0

DW1,DW0 DWA1,

DWA0

DR1,DR0 DRA1,

DRA0

00 Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

Mapping

Both code and data with 16 bytes resolution.

For both 256K and 1M pod: 1M mapping capability.

Trace

1) Can trigger/break on code fetch/code read (MOVC)/address/data,
external data read/write/address/data.

2) You must use the trace if you want to break at external access (external
data read/write address and/or read/write data).

Shadow Memory

Supports speeds up to 30MHz (requires IETR).

Chapter 6: POD-51XA/G3/I EMUL51XA™-PC

Copyright © 1998 ICE Technology94

Speed Limit

POD FREQ BUS CYCLE CODE FETCH/DATA
READ/DATA WRITE

(16 bit)

5 CLK W/ALE,

4 CLK W/O
ALE

4 CLK
W/ALE,

3 CLK W/O
ALE

3 CLK W/
ALE, 2 CLK

W/O ALE

2 CLK W/
ALE, 1

CLK W/O
ALE

POD-51XAG3-256/I-16 16MHz WORKING WORKING WORKING WORKING

POD-51XAG3-256/I-20 20MHz WORKING WORKING WORKING WORKING

POD-51XAG3-256/I-25 25MHz WORKING WORKING WORKING WORKING

POD-51XAG3-256/I-30 30MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-1M/I16 16MHz WORKING WORKING WORKING WORKING

POD-51XAG3-1M/I20 20MHz WORKING WORKING WORKING WORKING

POD-51XAG3-1M/I25 25MHz WORKING WORKING WORKING WORKING

POD-51XAG3-1M/I30 30MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-256/I-16 16MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-256/I-20 20MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-256/I-25 25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-256/I-30 30MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-1M/I16 16MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-1M/I20 20MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-1M/I25 25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-1M/I30 30MHz WORKING WORKING WORKING NOT
WORKING

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

Copyright © 1998 ICE Technology 95

Chapter 7: POD-51XA/G3/E

Introduction

This pod board contains a Philip's P51XAG3 bondout microcontroller chip
(suitable for emulating the Philip's 80C51XA), a 16/20/25/30 MHz crystal, 256
kilobytes or 1 MB emulation RAM, circuits for driving the bus cable, and two
large FPGA chips. Low-voltage 3.3 VDC is supported by using target power
(remove JP16 PWR jumper.).

JP4

JP17

JP18

JP19

JP13

JP14

JP20

JP3

JP16

Mem Config

RXD0

RXD1

RESET

EA/WAIT

PWR

Adapter
Orientation

(insert on bottom)

Pin 1

1 in.

2.5 cm.

1 in.

2.5 cm.

44 pin PGA connector is

used with a 44 pin PGA

to 44 pin PLCC adapter,

requiring one inch of

space above the target.

5.5 in. (14 cm.)

4
in

. (
10

.1
 c

m
.)

TOP VIEW

Figure 51: POD-51XA/G3/E

You must configure the software to match the hardware jumper configuration for
data buswidth and number of address lines.

If you use 16-bit data bus, you must have twenty bits of address. Again, the
software setup must match this setting.

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

96 Copyright © 1998 ICE Technology

Dimensions

The pod board itself is 5.5 inches by 4 inches (14 cm. by 10.1 cm). The pod
requires one inch (2.5 cm) of space above the target.

The location and dimensions of the 44-pin PGA connector is shown in Figure
48. This 44-in PGA connector is attached to a 44-pin PGA to PLCC adapter.
The dimensions of the 44 pin PGA to PLCC adapter are shown in Figure 52.

.50 in.

12.72 mm.

.75 in.

19.05 mm.

1.20 in.

30.5 mm.

Adapter Disconnected

Adapter Connected

Figure 52: Adapter Dimensions

Emulation Memory

The microcontroller can directly address 128K bytes of code memory and 128K
bytes of data memory. If target designs require larger memory size, a pod with
512K bytes of code memory and 512K bytes of data memory is available. Email
support at suppor@icetech.com for information about ordering a 512K-byte pod.

Note: The memory can also be configured as 256K bytes of code
memory without data memory or 1M byte of code without data
memory (see "Memory Configuration Header (JP19)" on page
98).

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

Copyright © 1998 ICE Technology 97

Headers

In Figure 51, all the headers are shown with their jumpers in the factory default
positions. When shipped from the factory, all jumpers are in place for stand-
alone operation (without a target) running code from external code memory after
reset, and 20 bits of address and 16 bits of data. When you connect the pod to
a target, be sure to examine all jumpers and make sure that they are all
correctly placed.

Clock Headers (JP1 and JP2)

These two headers each have two jumper positions: TARGET and POD. When
set in the TARGET position, the pod controller will receive the clock signal from
the target crystal. With both in the POD position, the bond-out controller on the
pod will use the oscillator on the pod. It is important to use a 50 percent duty-
cycle crystal/oscillator.

Note: When the clock jumpers are in the POD position, the XTAL1 and
XTAL2 signals from the pod are disconnected from the target.

PWR Header (JP16)

Remove this jumper when the target has its own power supply. With this jumper
in place, the target may get 5.0 VDC from the pod as long as the current
requirement is less than 0.5 amps. Higher currents will cause a significant
voltage drop along the current path and the pod may also be damaged. Remove
this jumper for 3.3 VDC low-voltage operation.

Warning: Always turn on the PC before applying power to the target. Always turn off
the target power before turning off the PC power.

RXD Headers (JP13 and JP14)

If your target outputs debugging information on the serial port, you may wish to
connect an RS232 device like a terminal or a PC. This pod includes a MAX232
chip to convert the signal levels from RS232 to TTL levels. The MAX232 chip
will drive the serial port input pin on the controller if you place a jumper on either
RXD header. To keep the MAX232 chip from driving the serial input pin on the
controller, remove the jumper on the RXD header.

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

98 Copyright © 1998 ICE Technology

Trace Header (JP15)

These eight pins can be used to monitor any eight logic signals on your target
board. They are displayed in the Trace menu as TR0..Tr7 where TR0 is closest
to the JP15 label and TR7 is closest to the RAM Select jumper (JP21).

Reset Header (JP20)

Occasionally, a target may contain an external device designed to reset the
controller by pulling the RST pin low. During debugging, that may be
inconvenient. The signal from the target RST pin passes through the RST
header. Removing the RST jumper will prevent the external device from
resetting the pod controller.

EA/WAIT Header (JP3)

This header has two jumper positions: POD and TARGET. When the pod
operates in stand-alone mode (without a target), the jumper should be set in
POD position. The pod will provide the EA/WAIT signal to the on-pod controller.
When the pod is connected to the target, the jumper should be set in the
TARGET position. The target EA/WAIT signal passes through this header.

BUSWIDTH Header (JP4)

When this pod operates in stand-alone mode (without a target), using a jumper
on this header will make the pod controller run with 8 bits wide data bus.
Removing this jumper will make the pod controller run with 16 bits wide data
bus. When the pod is connected to a target, this header should be removed.
The target BUSW signal will pass to the pod controller.

Note: This pod does not support user programs that can override the
bus width setting by writing to the Bus Configuration Register
(BCR). The bus width is determined by the value of the BUSW
pin when Reset is released.

Memory Configuration Header (JP19)

If this jumper is removed, the pod memory is configured as 128K code memory
and 128K data memory. By placing a jumper on JP19, the pod memory is
configured as 256K code memory without data memory. Or, if you have the
512K pod, it can be configured as a 1M byte code and no external data
memory.

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

Copyright © 1998 ICE Technology 99

12/16-BIT and 12-BIT Headers (JP17 and JP18)

These two headers determine how many address lines the pod controller is
using.

12/16-BIT 12-BIT NUMBER OF ADDRESS LINES

ON ON 12

ON OFF 16

OFF OFF 20

Note: This pod does not support user Programs than can override the
setting of the number of address lines by writing to the Bus
Configuration Register (BCR).

A12-A19 Headers (JP5-JP12)

By setting the 12/16-BIT and 12-BIT headers, the number of address lines is
determined. The next step is to set the A12-A19 headers which each have two
positions: P2.x and GND. Set these headers according to the following table:

NO. OF
ADDRESS

LINES

A12 A13 A14 A15 A16 A17 A18 A19

12 GND GND GND GND GND GND GND GND

16 P2.0 P2.1 P2.2 P2.3 GND GND GND GND

20 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

RAM Select Headers (JP21, JP22)

Header JP21 has two jumper positions: 128K and 512K. When using a 256K
pod, set this jumper to the 128K position and remove the jumper on JP22.
When using a 1M pod, set this jumper to the 512K position and place a jumper
on JP22.

Note: This jumper is set when the pod is manufactured and should not
need to be changed by the user.

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

100 Copyright © 1998 ICE Technology

Features and Limitations

The POD-51XA/G3/E is designed to be used for ROM-less operation (external
mode), i.e., the /EA is LOW during reset.

The emulator will use six bytes of stack space in large memory model (four
bytes small model), so add this to your stack size calculation to avoid a stack
overflow exception at 0080H.

Emulation Memory

256K pod: 128K code and 128K data memory or,

256K code and 0K data memory.

1M pod: 512K code and 512K data memory or,

1M code and 0K data memory.

Software breakpoints

Wherever there is write-able RAM.

Hardware breakpoints

All code address, one instruction skid.

256K pod : 256K hardware breakpoints.

 1M pod : 1M hardware breakpoints.

Operation frequency

1) 0.1M to 20M without wait states in 16-bit mode, i.e. any values for CR1,
CR0, CRA1, CRA0 in BTRL, and any values for DW1, DW0, DWA1, DWA0,
DR1, DR0, DRA1, DRA0 in BTRH.

2) 21M to 30M with one wait state in 16-bit mode, i.e. CR1, CR0 equal 00,
or CRA1, CRA0 equal 00 in BTRL, or DW1, DW0 equal 00, or DWA1, DWA0
equal 00, or DR1, DR0 equal 00, or DRA1, DRA0 equal 00 in BTRH are not
supported (see chart on External Bus Signal Timing Configuration).

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

Copyright © 1998 ICE Technology 101

3) 0.1M to 30M with one wait state in 8-bit mode, i.e. CR1, CR0 equal 00,
or CRA1, CRA0 equal 00 in BTRL, or DW1, DW0 equal 00, or DWA1, DWA0
equal 00, or DR1, DR0 equal 00, or DRA1, DRA0 equal 00 in BTRH are not
supported (see chart on External Bus Signal Timing Configuration).

External Bus Signal Timing Configuration

CR1,CR0 CRA1,

CRA0

DW1,DW0 DWA1,

DWA0

DR1,DR0 DRA1,

DRA0

00 Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

Mapping

Both code and data with 16 bytes resolution.

For both 256K and 1M pod: 1M mapping capability.

Trace

1) Can trigger/break on code fetch/code read (MOVC)/address/data,
external data read/write/address/data.

2) You must use the trace if you want to break at external access (external
data read/write address and/or read/write data).

Shadow Memory

Supports speeds up to 30MHz (requires IETR).

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

102 Copyright © 1998 ICE Technology

Wait State Input / WAITD Bit

The /EA/WAIT input is delayed by a 10ns gate.

The POD-51XA/G3/E does not support Wait State Disable, i.e the WAITD bit
(bit 4) in BCR equal to 1 is not supported.

Speed Limit

POD FREQ BUS CYCLE CODE FETCH/DATA
READ/DATA WRITE

(16 bit)

5 CLK W/ALE,

4 CLK W/O
ALE

4 CLK
W/ALE,

3 CLK W/O
ALE

3 CLK W/
ALE, 2 CLK

W/O ALE

2 CLK W/
ALE, 1 CLK
W/O ALE

POD-51XAG3-
256/E16

16MHz WORKING WORKING WORKING WORKING

POD-51XAG3-
256/E20

20MHz WORKING WORKING WORKING WORKING

POD-51XAG3-
256/E25

25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
256/E30

30MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E16

16MHz WORKING WORKING WORKING WORKING

POD-51XAG3-
1M/E20

20MHz WORKING WORKING WORKING WORKING

POD-51XAG3-
1M/E25

25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E30

30MHz WORKING WORKING WORKING NOT
WORKING

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

Copyright © 1998 ICE Technology 103

POD FREQ BUS CYCLE CODE FETCH/DATA
READ/DATA WRITE

(8 bit)

5 CLK W/ALE,

4 CLK W/O
ALE

4 CLK
W/ALE,

3 CLK W/O
ALE

3 CLK W/
ALE, 2 CLK

W/O ALE

2 CLK W/
ALE, 1 CLK
W/O ALE

POD-51XAG3-
256/E16

16MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
256/E20

20MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
256/E25

25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
256/E30

30MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E16

16MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E20

20MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E25

25MHz WORKING WORKING WORKING NOT
WORKING

POD-51XAG3-
1M/E30

30MHz WORKING WORKING WORKING NOT
WORKING

EMUL51XA™-PC Chapter 7: POD-51XA/G3/E

104 Copyright © 1998 ICE Technology

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 105

Chapter 8: POD-51XA/G3/IE

Introduction

The POD–51XA/G3/IE contains a Philips P51XAG3 bondout microcontroller
chip, (suitable for emulating the Philips P51XAG3 up to 16/20/25/30 MHz) 256
Kbytes, 1 Mbyte or 2 Mbytes of emulation RAM, circuits for driving the bus
cable, and CPLD chips. The pod supports low-voltage 3.3 VDC operation. You
need to remove the JP15 (POD PWR) jumper and set JP16 (5 V/3 V) to the 3 V
position in order for the pod to operate at 3.3 VDC.

The software configurations must match the hardware jumper configurations for
the data buswidth and the number of address lines. If you use a 16-bit data bus,
you must have 20 bits of address. The software setup must match this setting.

6.35 in.

4.
1

in
.

Adapter
Orientation

(insert on bottom)

Pin 1

1 in.

2.5 cm.

1 in.

2.5 cm.

The 44-pin PGA connector

is used with a 44-pin PGA

to 44-pin PLCC adapter,

requiring one inch of

space above the target.

TOP VIEW

JP1

JP2

JP24

JP25

JP11

JP12

JP23

JP18

JP28

JP15

JP
3

JP
4

JP
5

JP
6

JP
7

JP
8

JP
9

JP
10

JP26

JP22

JP19

JP20

JP27

JP21

JP16
JP13

J2J1

JP14

Figure 53: POD–51XA / G3 / IE

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

106 Copyright © 1998 ICE Technology

JP
1

JP
2

JP
24

JP
25

JP
11

JP
12

JP
23

JP
18

JP
28

JP
15 JP3 JP4 JP5 JP6 JP7 JP8 JP9 JP10

JP
26

JP
22

JP
19

JP
20

JP
27

JP
21

JP
16

JP
13

J2
J1

JP
14

N
C

N
C

Figure 54. Enlargement of POD–51XA / G3 / IE

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 107

0.305 in.

7.76 mm.

0.755 in.

19.17 mm.

Adapter Disconnected

0.95 in.

24.13 mm.
Adapter Connected

0.485 in.

12.32 mm.

Protector Socket

Figure 55: Adapter Dimensions

Dimensions

The pod board measures 6.35 inches by 4.1 inches and requires one inch (2.5
cm) of space above the target.

The location and dimensions of the 44-pin PGA connector is shown in Figure
53. This 44-pin PGA connector is attached to a 44-pin PGA to PLCC adapter.
The dimensions of the 44-pin PGA to PLCC adapter are shown in Figure 55.

Internal / External Trace Board (IETR) Users

Figure 56, shows the items that you must remove before installing the trace
board. Remove the foam, the protector socket, and the back panel from the
pod. Do not remove the spacer from under the pod board.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

108 Copyright © 1998 ICE Technology

Pod Board

 Remove
this Spacer
Do Not

Remove Back Panel

Remove Protector
Socket

Remove Foam

Trace Board

Figure 56: Internal / External Trace Board Installation

Emulation Memory

The standard emulator pod has 128 Kbytes of code and 128 Kbytes of data
memory. If you need more memory, pods with 512 Kbytes and 1 Mbyte of code
and data memory are available. Email sales@icetech.com for information about ordering
a one- or two-megabyte pod.

Memory can also be configured as

• Kbytes of code memory without data memory (256K pod)

• 256 Kbytes of code and data overlay (256K pod)

• 512 Kbytes of code and 512 Kbytes of data memory

• 1 Mbyte of code without data memory (1-Mbyte pod)

• 1 Mbyte of code and data overlay (1-Mbyte pod)

See the “Code Header—JP26 and Overlay #Header—JP22” section on page
114 for details on the jumper settings.

Headers

Figure 54 on page 106 shows the headers with their jumpers in the default
positions. When shipped from the factory, all jumpers are in place for stand-
alone operation (without a target). This stand-alone operation runs code from
external code memory after reset, 20 bits of address, and 16 bits of data.

When you connect this pod to a target, be sure to examine all the jumpers for
correct placement. The following sections describe the correct placement for
these jumpers.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 109

Clock Headers—JP1 and JP2

These two headers each have two jumper positions: TARGET and POD. They must
be moved as a pair. With both headers set in the TARGET position, the on-pod XA
bondout chip receives the clock signal from the target crystal or oscillator. It is
important to use a 50 percent duty-cycle oscillator.With both headers set in the
POD position, the XA bondout chip uses the oscillator on the pod.

Note: The XTAL1 and XTAL2 signals from the pod are disconnected from the target when
the clock jumpers are in the POD position.

EXT Mode Header—JP20

If you operate the XA in Internal mode (see Figure 57) then you need to remove
JP20. If you operate the XA in External mode (see Figure 58) then you need to
install JP20. Internal mode means /EA = VCC (5.0 VCC for XAG49, 3.3 or 5.0 for
G3), and code memory starts from on-chip ROM/FLASH. External mode means
code memory starts from off-chip EPROM or FLASH and /EA = 0 VDC. The Pod
Selection menu also follows these guidelines – INT if /EA = VCC, EXT if /EA = 0.

Figure 17. Selecting the Internal Mode Operation

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

110 Copyright © 1998 ICE Technology

Figure 58: Selecting the External Mode Operation

PC–PWR Header—JP14

If you run the pod with the EPC interface, install JP14 and use the external
power supply. When using the LC–ISA, we recommend using the external
power supply and removing JP14. To run the pod with PC power, install JP14
(the external power supply is not used).

POD–PWR Header—JP15

Remove JP15 if you are using power from the target for the CPU. If JP15 is not
removed in this circumstance, the target VCC is connected to 5 V from the pod.
If the target requires less than 0.5 amps current, the pod can be used to power
the target with JP15 installed. Higher currents cause a significant voltage drop
along the current path. This drop in voltage can damage the pod. You need to
remove JP15 in order for the pod to operate at 3.3 VDC supplied by the target.

Target On Header—JP28

If you connect the pod to a target that could be affected by the pod outputting
1.8 volts at the XA VCC pin and the I/O pins, remove JP28 before applying
power to the target. Reinstall JP28 after applying power to the target. Similarly,
remove JP28 before you turn off the target power. JP28 has this off-and-on
capability to avoid voltage problems. By removing JP28, all the pins of the XA
are tristated. However, after applying power to the target, you must reinstall
JP28.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 111

WARNING Always turn on the PC before applying power to the target. Always turn off
the target power before turning off the PC power.

5 V and 3 V Header—JP16

If you operate the XA at 5 V, set JP16 at the 5 V position. If you operate the XA
at 3.3 V, set JP16 at the 3 V position.

RXD Headers—JP11 and JP12

If your target outputs debugging information on the serial port, you might want to
connect an RS232 device (a terminal or a PC). This pod includes a MAX232
chip that converts the signal levels from RS232 to TTL levels. If you place a
jumper on either RXD header, the MAX232 chip drives the serial port input pin
on the XA bondout chip. To keep the MAX232 chip from driving the serial input
pin on the XA bondout chip, remove the jumper on the RXD header.

RS232 Headers—J1 and J2

Header J1 connects to serial port 0. Header J2 connects to serial port 1.

Trace Header—JP13

With the optional trace, these eight pins monitor any eight logic signals on your
target board. The Trace menu displays these pins as TR0 – TR7. TR0 is closest
to the JP13 label and TR7 is closest to the 5 V/3 V jumper, JP16.

Reset Header—JP18

Occasionally, a target contains an external device designed to reset the XA chip
by pulling the RST pin low. During debugging, this reset might be inconvenient.
The signal from the target RST pin passes through the RST jumper. Removing
the RST jumper prevents the external device from resetting the XA bondout
chip.

TARGET / POD Wait Header—JP23

This header has two jumper positions: POD and TARGET. When the pod
operates in stand-alone mode (without a target), set JP23 in the POD position.
The pod provides the WAIT signal to the on-pod XA bondout chip. When the
pod operates with a target, setting JP23 in the TARGET position connects the
XA to the target WAIT signal. The target WAIT signal passes through JP23.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

112 Copyright © 1998 ICE Technology

I/O Port Header—JP19

JP19 enables the pod to recognize the signals on P3.6 and P3.7 as I/O signals,
instead of WR and RD signals. Install JP19 if the XA operates in internal mode, and
uses all pins on P0, P1, P2 and P3 as I/O. If the XA does not operate in internal
mode, remove JP19.

Target BW Header—JP21 and 8-Bit Header—JP27

JP21 should always be off.

When stand-alone, the 8-bit jumper, JP27, enables the on-pod XA boundout chip
to run with an 8-bit wide data bus. Removing JP27 enables the on-pod XA bondout
chip to run with a 16-bit wide data bus.

Note: This pod does not support user programs that can override the bus width setting by
writing to the Bus Configuration Register (BCR). The bus width is determined by
the value of the BUSW pin when Reset is released.

Code Header—JP26 and Overlay #Header—JP22

Table 1. Jumper Settings for the 256K Pod

256K Pod Code Header—JP26 Overlay #Header—JP22

128K code, 128K data Off On

256K code, 0K data On On

256K code, 256K data overlay Off Off

Table 2. Jumper Settings for the 1-Mbyte Pod

1-Mbyte Pod Code Header—JP26 Overlay #Header—JP22

512K code, 512K data Off On

1 Mbyte code, 0 Mbyte data On On

1 Mbyte code, 1 Mbyte data overlay Off Off

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 113

Table 3. Jumper Settings for the 2-Mbyte Pod

2-Mbyte Pod Code Header—JP26 Overlay #Header—JP22

1 Mbyte code, 1 Mbyte data Off Off

12 / 16-Bit and 12-Bit Headers—JP24 and JP25

JP24 and JP25 determine the number of address lines that are used by the on-
pod XA boundout chip.

Table 4. JP24 and JP25 Settings

JP 25 (12-/16-Bit) JP 24 (12-Bit) Number of Address Lines

On On 12

On Off 16

Off Off 20

Note: This pod does not support user Programs that override the
number of address lines setting by writing to the Bus
Configuration Register (BCR).

A12 – A19 Headers—JP3 – JP10

The A12 – A19 headers each have two positions: P2.x and GND. Set these
headers according to the number of address lines that were set by the JP24 and
JP 25 jumpers (see Table 5).

Table 5. A12 – A19 Headers—JP3 – JP10 Settings

Number of Address Lines A12 A13 A14 A16 A17 A18 A19

12 GND GND GND GND GND GND GND

16 P2.0 P2.1 P2.2 GND GND GND GND

20 P2.0 P2.1 P2.2 P2.4 P2.5 P2.6 P2.7

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

114 Copyright © 1998 ICE Technology

Features and Limitations

The emulator uses six bytes of stack space in a large memory model and four
bytes of stack space in a small memory model. You need to add six (or four)
bytes to your stack size calculation to avoid a stack overflow exception at
0080H.

Emulation Memory

One of the following for the 256K pod

• 128K code and 128K data memory
• 256K code and 0K data memory
• 256K code and 256K data memory overlay

One of the following for the 1-Mbyte pod

• 512K code and 512K data memory
• 1 Mbyte code and 0 Mbyte data memory
• 1 Mbyte code and 1 Mbyte data memory overlay

The 2-Mbyte pod has 1 Mbyte of code and 1 Mbyte of data memory.

Software Breakpoints

You can set software breakpoints wherever there is emulation code memory.

Hardware Breakpoints

• All code address, one instruction skid

ä 256K pod—256K hardware breakpoints
ä 1-Mbyte pod—1 Mbyte hardware breakpoints
ä 2-Mbyte pod—1 Mbyte hardware breakpoints

• External data read/write address with word resolution

Fast Break Write

Fast Break Write is available when the pod is operating in the external or
internal mode.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

Copyright © 1998 ICE Technology 115

Data / Address Bus Configurations

The configurations of an 8-bit data bus and a 12-bit address bus in external
mode are not supported.

Operating Frequency

1 MHz to 25 MHz in 16-Bit Mode

WM0 must equal 1 in BTRL. Table 6 shows the external bus signal timing
configurations.

Table 6. Configurations for 1 MHz to 25 MHz in 16-Bit Mode

CR1, CR0
CRA1,
CRA0

DW1,
DW0

DWA1,
DWA0

DR1,
DR0

DRA1,
DRA0

00 Supported Supported N/A Not
supported

N/A Supported

01 Supported Supported N/A Supported N/A Supported

10 Supported Supported N/A Supported N/A Supported

11 Supported Supported N/A Supported N/A Supported

25 MHz to 30 MHz in 16-Bit Mode

WM0 must equal 1 in BTRL. Table 7 shows the external bus signal timing
configurations.

Table 7. Configurations for 25 MHz to 30 MHz in 16-Bit Mode

CR1, CR0
CRA1,
CRA0

DW1,
DW0

DWA1,
DWA0

DR1,
DR0 DRA1, DRA0

00 Not
supported

Not
supported

N/A Not
supported

N/A Not
supported

01 Supported Supported N/A Supported N/A Supported

10 Supported Supported N/A Supported N/A Supported

11 Supported Supported N/A Supported N/A Supported

1 MHz to 20 MHz in 8-Bit Mode

WM0 must equal 1 in BTRL. Table 8 shows the external bus signal timing
configurations.

EMUL51XA™-PC Chapter 8: POD-51XA/G3/IE

116 Copyright © 1998 ICE Technology

Table 8. Configurations for 1 MHz to 20 MHz in 8-Bit Mode

CR1, CR0
CRA1,
CRA0 DW1, DW0

DWA1,
DWA0 DR1, DR0

DRA1,
DRA0

00 Supported Supported Not
supported

Not
supported

Supported Supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

20 MHz to 30 MHz in 8-Bit Mode

WM0 must equal 1 in BTRL. Table 9 shows the external bus signal timing
configurations.

Table 9. Configurations for 20 MHz to 30 MHz in 8-Bit Mode

CR1, CR0 CRA1,
CRA0

DW1, DW0 DWA1,
DWA0

DR1, DR0 DRA1,
DRA0

00 Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

Mapping Capabilities

The mapping capabilities map code and data with 16 bytes of resolution. The
mapping capability covers the entire address range of the POD–51XA/G3/IE (1
Mbyte).

Trace

Trace can trigger/break on code fetch/code read (MOVC)/address/data, external
data read/write/address/data.

Shadow Memory

Shadow memory supports speeds up to 30 MHz, and is available when you use
an IETR.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 117

Chapter 9: POD-51XA/S3/IE

Introduction

The POD–51XA/S3/IE contains a Philips P51XAS3 bondout microcontroller chip,
(suitable for emulating the Philips P51XAS3 up to 16/20/25/30 MHz) 256
Kbytes, 1 Mbyte or 2 Mbytes of emulation RAM, circuits for driving the bus cable,
and CPLD chips. The pod supports low-voltage 3.3 VDC operation. You need to
remove the JP15 (POD PWR) jumper and set JP16 (5 V/3 V) to the 3 V position
in order for the pod to operate at 3.3 VDC.

The software configurations must match the hardware jumper configurations for
the data buswidth and the number of address lines. If you use a 16-bit data bus,
you must have 20 or 24 bits of address. The software setup must match this
setting.

0.70 in.

2.35 in.

6.35 in.

2.
92

5
in

.

1.
12

5
in

.

4.
1

in
.

Front

Pin 1

Adapter Orientation
(insert on bottom)

1.75 in.

1.745 in.

72-Pin Connector

Location of
the 72-Pin
Connector

Figure 59: POD-51XA/S3/IE

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

118 Copyright © 1998 ICE Technology

Figure 60: Enlargement of POD-51XA/S3/IE

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 119

0.755 in.

19.17 mm.

Adapter Disconnected

0.305 in.

7.76 mm.

0.755 in.

19.17 mm.

Adapter Connected

Figure 61: Adapter Dimensions

Dimensions

The pod board measures 6.35 inches by 4.1 inches and requires one inch of
space above the target.

The dimensions of the 68-pin PLCC adaptor (ET/AP4-68-SUB1) are shown in
Figure 59. This 68-pin PLCC adaptor (ET/AP4-68-SUB1) is attached to a 72-pin
connector on the bottom of the pod board. The location of the 72-pin connector
is shown in Figure 59. The dimensions of the 68-pin PLCC adaptor (ET/AP4-68-
SUB1) are shown in Figure 61.

Internal / External Trace Board (IETR) Installation

O

Pod Board

Trace Board

Front View Back View

Pod Board

Trace Board

Figure 62: Internal / External Trace Board (IETR) Installation

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

120 Copyright © 1998 ICE Technology

Emulation Memory

The microcontroller directly addresses 128 Kbytes of code and 128 Kbytes of
data memory. If you need more memory, pods with 1 Mbyte and 2 Mbytes of
emulation memory are available. Email sales@icetech.com for information about ordering
a one- or two-megabyte pod.

Memory can also be configured as

• Kbytes of code memory without data memory (256K pod)

• Kbytes of code and data overlay (256K pod)

• Kbytes of code and 512 Kbytes of data memory

• Mbyte of code without data memory (1-Mbyte pod)

• Mbyte of code and data overlay (1-Mbyte pod)

• Mbytes of code without data memory (2-Mbyte pod)

• Mbytes of code and data overlay (2-Mbyte pod)

See the “Code Header—JP26 and Overlay #Header—JP22” section on page 7
for details on the jumper settings.

Headers

Figure 60 shows the headers with their jumpers in the default positions. When
shipped from the factory, all jumpers are in place for stand-alone operation
(without a target). This stand-alone operation runs code from external code
memory after reset, 24 bits of address, and 16 bits of data.

When you connect this pod to a target, be sure to examine all the jumpers for
correct placement. The following sections describe the correct placement for
these jumpers.

Clock Headers—JP1 and JP2

These two headers each have two jumper positions: TARGET and POD. They
must be moved as a pair. With both headers set in the TARGET position, the
on-pod XA bondout chip receives the clock signal from the target crystal or
oscillator. It is important to use a 50 percent duty-cycle oscillator.With both
headers set in the POD position, the XA bond-out chip uses the oscillator on the
pod.

Note: The XTAL1 and XTAL2 signals from the pod are disconnected
from the target when the clock jumpers are in the POD position.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 121

EXT Mode Header—JP20

If you operate the XA in Internal mode (see Figure 63), then you need to
remove JP20. If you operate the XA in External mode (see Figure 64), then you
need to install JP20.

Figure 63: Selecting the Internal Mode Operation

Figure 64: Selecting the External Mode Operation

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

122 Copyright © 1998 ICE Technology

PC–PWR Header—JP14

If you run the pod with the EPC interface, install JP14 and use the external
power supply. When using the LC–ISA, we recommend using the external
power supply and removing JP14. To run the pod with PC power, install JP14
(the external power supply is not used).

POD–PWR Header—JP15

Remove JP15 if you are using power from the target for the CPU. If JP15 is not
removed in this circumstance, the target VCC is connected to 5 V from the pod.
If the target requires less than 0.5 amps current, the pod can be used to power
the target with JP15 installed. Higher currents cause a significant voltage drop
along the current path. This drop in voltage can damage the pod. You need to
remove JP15 in order for the pod to operate at 3.3 VDC supplied by the target.

Target On Header—JP28

If you connect the pod to a target that could be affected by the pod outputting
1.8 volts at the XA VCC pin and the I/O pins, remove JP28 before applying
power to the target. Reinstall JP28 after applying power to the target. Similarly,
remove JP28 before you turn off the target power. JP28 has this off-and-on
capability to avoid voltage problems. By removing JP28, all the pins of the XA
are tristated. However, after applying power to the target, you must reinstall
JP28.

WARNING Always turn on the PC before applying power to the target. Always turn off
the target power before turning off the PC power.

5 V and 3 V Header—JP16

If you operate the XA at 5 V, set JP16 at the 5 V position. If you operate the XA
at 3.3 V, set JP16 at the 3 V position.

RXD Headers—JP11 and JP12

If your target outputs debugging information on the serial port, you might want to
connect an RS232 device (a terminal or a PC). This pod includes a MAX232
chip that converts the signal levels from RS232 to TTL levels. If you place a
jumper on either RXD header, the MAX232 chip drives the serial port input pin
on the XA bondout chip. To keep the MAX232 chip from driving the serial input
pin on the XA bondout chip, remove the jumper on the RXD header.

RS232 Headers—J1 and J2

Header J1 connects to serial port 0. Header J2 connects to serial port 1.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 123

Trace Header—JP13

With the optional trace, these eight pins monitor any eight logic signals on your
target board. The Trace menu displays these pins as TR0 – TR7. TR0 is closest
to the JP13 label and TR7 is closest to the 5 V/3 V jumper, JP16.

Reset Header—JP18

Occasionally, a target contains an external device designed to reset the XA chip
by pulling the RST pin low. During debugging, this reset might be inconvenient.
The signal from the target RST pin passes through the RST jumper. Removing
the RST jumper prevents the external device from resetting the XA bondout
chip.

TARGET / POD Wait Header—JP23

This header has two jumper positions: POD and TARGET. When the pod
operates in stand-alone mode (without a target), set JP23 in the POD position.
The pod provides the WAIT signal to the on-pod XA bondout chip. When the
pod operates with a target, setting JP23 in the TARGET position connects the
XA to the target WAIT signal. The target WAIT signal passes through JP23.

I/O Port Header—JP19

JP19 enables the pod to recognize the signals on P3.6 and P3.7 as I/O signals,
instead of WR and RD signals. Install JP19 if the XA operates in internal mode,
and uses all pins on P0, P1, P2 and P3 as I/O. If the XA does not operate in
internal mode, remove JP19.

Target BW Header—JP21 and 8-Bit Header—JP27

The Target BW jumper, JP21, must be installed when the pod is connected to a
target. The target BUSW signal passes to the on-pod XA bondout chip. When
the pod operates in stand-alone mode (without a target), remove JP21.

When stand-alone, the 8-bit jumper, JP27, enables the on-pod XA boundout
chip to run with an 8-bit wide data bus. Removing JP27 enables the on-pod XA
bondout chip to run with a 16-bit wide data bus.

Note: This pod does not support user programs that can override the
bus width setting by writing to the Bus Configuration Register
(BCR). The bus width is determined by the value of the BUSW
pin when Reset is released.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

124 Copyright © 1998 ICE Technology

Code Header—JP26 and Overlay #Header—JP22

Table 10. Jumper Settings for the 256K Pod

256K Pod Code Header—JP26 Overlay #Header—JP22

128K code, 128K data Off On

256K code, 0K data On On

256K code, 256K data overlay Off Off

Table 11. Jumper Settings for the 1-Mbyte Pod

1-Mbyte Pod Code Header—JP26 Overlay #Header—JP22

512K code, 512K data Off On

1 Mbyte code, 0 Mbyte data On On

1 Mbyte code, 1 Mbyte data
overlay

Off Off

Table 12. Jumper Settings for the 2-Mbyte Pod

2-Mbyte Pod Code Header—JP26 Overlay #Header—JP22

1 Mbyte code, 1 Mbyte data Off Off

2 Mbyte code, 0 Mbyte data On On

2 Mbyte code, 2 Mbyte data
overlay

Off Off

12 / 16-Bit and 12-Bit Headers—JP24 and JP25

JP24 and JP25 determine the number of address lines that are used by the on-
pod XA boundout chip.

Table 13. JP24 and JP25 Settings

JP 25 (12-/16-Bit) JP 24 (12-Bit) Number of Address Lines

On On 12

On Off 16

Off On 20

Off Off 24

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 125

Note: This pod does not support user Programs that override the
number of address lines setting by writing to the Bus
Configuration Register (BCR).

A12 – A23 Headers—JP3 – JP10 and JP29 – JP32

The A12 – A19 headers each have two positions: P2.x and GND. Set these
headers according to the number of address lines that were set by the JP24 and
JP 25 jumpers The positions for A20 and A21 are P4.x and GND. The positions
for A22 and A23 are P6.x and GND (see Table 5).

Table 14. A12 – A19 Headers—JP3 – JP10 Settings

Number of Address Lines

Header 12 16 20 24

A12 GND P2.0 P2.0 P2.0

A13 GND P2.1 P2.1 P2.1

A14 GND P2.2 P2.2 P2.2

A15 GND P2.3 P2.3 P2.3

A16 GND GND P2.4 P2.4

A17 GND GND P2.5 P2.5

A18 GND GND P2.6 P2.6

A19 GND GND P2.7 P2.7

A20 GND GND GND P4.6

A21 GND GND GND P4.7

A22 GND GND GND P6.0

A23 GND GND GND P6.1

Features and Limitations

The emulator uses six bytes of stack space in a large memory model and four
bytes of stack space in a small memory model. You need to add six (or four)
bytes to your stack size calculation to avoid a stack overflow exception at
0080H.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

126 Copyright © 1998 ICE Technology

Emulation Memory

One of the following for the 256K pod

• 128K code and 128K data memory (non-relocatable)
• 256K code and 0K data memory (non-relocatable)
• 256K code and 256K data memory overlay (non-relocatable)

One of the following for the 1-Mbyte pod

• 512K code and 512K data memory (non-relocatable)
• 1 Mbyte code and 0 Mbyte data memory (non-relocatable)
• 1 Mbyte code and 1 Mbyte data memory overlay (non-relocatable)

One of the following for the 2-Mbyte pod

• 1-Mbyte code and 1-Mbyte data memory
(Both 1 Mbyte memory is relocatable throughout the 16-Mbyte address
space in one of the sixteen 1-Mbyte blocks)

• 2-Mbyte code and 0-Mbyte data
(Both 1 Mbyte memory is relocatable throughout the 16-Mbyte address
space in one of the sixteen 1-Mbyte blocks)

• 2-Mbyte code and data memory overlay
(Both 1 Mbyte memory is relocatable throughout the 16-Mbyte address
space in one of the sixteen 1-Mbyte blocks)

Software Breakpoints

You can set software breakpoints wherever there is emulation code memory.

Hardware Breakpoints

The POD–51XA/S3/IE has two 1-Mbyte hardware breakpoint blocks that are
relocatable throughout the 16-Mbyte address space of the pod.

• All code address, one instruction skid
• External data read/write address with word resolution

Fast Break Write

Fast Break Write is available when the pod is operating in the external or
internal mode.

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

Copyright © 1998 ICE Technology 127

Data / Address Bus Configurations

The configurations of an 8-bit data bus and a 12-bit address bus in external
mode are not supported.

Operating Frequency

1 MHz to 20 MHz in 16-Bit Mode

WM0 must equal 1 in BTRL. Table 6 shows the external bus signal timing
configurations.

Table 15. Configurations for 1 MHz to 20 MHz in 16-Bit Mode

CR1, CR0
CRA1,
CRA0

DW1,
DW0

DWA1,
DWA0

DR1,
DR0

DRA1,
DRA0

00 Supported Supported N/A Not
supported

N/A Supported

01 Supported Supported N/A Supported N/A Supported

10 Supported Supported N/A Supported N/A Supported

11 Supported Supported N/A Supported N/A Supported

20 MHz to 30 MHz in 16-Bit Mode

WM0 must equal 1 in BTRL. Table 7 shows the external bus signal timing
configurations.

Table 16. Configurations for 20 MHz to 30 MHz in 16-Bit Mode

CR1, CR0
CRA1,
CRA0

DW1,
DW0

DWA1,
DWA0

DR1,
DR0 DRA1, DRA0

00 Not
supported

Not
supported

N/A Not
supported

N/A Not
supported

01 Supported Supported N/A Supported N/A Supported

10 Supported Supported N/A Supported N/A Supported

11 Supported Supported N/A Supported N/A Supported

EMUL51XA™-PC Chapter 9: POD-51XA/S3/IE

128 Copyright © 1998 ICE Technology

1 MHz to 20 MHz in 8-Bit Mode

WM0 must equal 1 in BTRL. Table 8 shows the external bus signal timing
configurations.

Table 17. Configurations for 1 MHz to 20 MHz in 8-Bit Mode

CR1, CR0
CRA1,
CRA0 DW1, DW0

DWA1,
DWA0 DR1, DR0

DRA1,
DRA0

00 Supported Supported Not
supported

Not
supported

Supported Supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

20 MHz to 30 MHz in 8-Bit Mode

WM0 must equal 1 in BTRL. Table 9 shows the external bus signal timing
configurations.

Table 18. Configurations for 20 MHz to 30 MHz in 8-Bit Mode

CR1, CR0 CRA1,
CRA0

DW1, DW0 DWA1,
DWA0

DR1, DR0 DRA1,
DRA0

00 Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

Not
supported

01 Supported Supported Supported Supported Supported Supported

10 Supported Supported Supported Supported Supported Supported

11 Supported Supported Supported Supported Supported Supported

Mapping Capabilities

The mapping capabilities map code and data with 128 bytes of resolution. The
mapping capability covers the entire address range of the POD–51XA/S3/IE
(16 Mbytes).

Trace
Trace can trigger/break on code fetch/code read (MOVC)/address/data, external
data read/write/address/data.

Shadow Memory

Shadow memory supports speeds up to 30 MHz, and is available when you use
an IETR.

EMUL51XA™-PC Chapter 10: Software Support

Copyright © 1998 ICE Technology 129

Chapter 10: Software Support

Compilers

HI-TECH HPDXA

This integrated development environment is quite intuitive, although still a DOS-
windowed application. All linker directives are done through pull-down window
option lists, such as ROM, RAM, and NVRam start locations that are target
specific. The G3 part has 32KB of on-chip EPROM/ROM and 512 bytes of on-
chip data RAM starting a 0x0000. The POD-51XA/G3/I can support future
derivatives with up to 64KB of on-chip EPROM/ROM.

Note: The emulator software version referred to is 1.0H.

Starting a project using the HPDXA
1) From the Make menu select New project… and enter a project name. You

will then be asked to select processor and memory model. Currently the
processor type cannot be changed, but you can select the appropriate
memory model for your project.

2) For the output file format, select Intel HEX.

3) Make any necessary changes in ROM & RAM addresses.

4) For compiler optimization, select No optimization (there is a problem using
optimization with the current emulator software which will be fixed in a future
release).

Enter your source filenames and make sure the Pathnames option is set to
relative.

1) From the Options menu select Source level debug menu. If there is already
a check in front of it, leave as is.

2) From the Make menu select Symbol file name (it should have the same
name as the project). For example, if the project is test.prj, then the symbol
file would be test.sym.

EMUL51XA™-PC Chapter 10: Software Support

130 Copyright © 1998 ICE Technology

Using XAC Command Line Compiler
1) Use -Gfile option. The `file' in `-Gfile' should have the same name as the

final output. For example, if the final output is test.hex, then the -Gfile option
would be -Gtest.sym.

2) Because the default output type of the compiler is Intel Hex, it is not
necessary to use the option to specify the output file type.

Example 1: Single source file, test.c

 XAC -A0,20,1E0 -GTEST.SYM TEST.C

Example 2: Multiple source files, test.c, test1.c, test2.c

XAC -C -G TEST.C TEST1.C TEST2.C

XAC -A0,20,1E0 -GTEST.SYM TEST.OBJ TEST1.OBJ TEST2.OBJ

3) For both cases, the compiler will generate one ‘.hex’ file, one ‘.sym’ file and
for each source file, the compiler will generate one “.sdb’ file.

4) All the files mentioned above (.hex, .sym, .c and .sdb) should be in one
directory.

HIWARE / Archimedes

Nohau emulators support the HIWARE debug format.

Tasking

Nohau supports the Tasking debug format. See the readme.txt file under
..\emul51xa\tasking and the make file for required compiler and linker options.

Chapter 11: Troubleshooting

Overview

If you have trouble with your emulator, email support@icetech.com. If they call
the engineer will likely lead you through the following steps.

EMUL51XA™-PC Chapter 11: Troubleshooting

Copyright © 1998 ICE Technology 131

The items to check for below are in order. Start at number 1 and continue until
either the emulator works or you have reached the end of the list. Each item is a
short version of a description found elsewhere in this manual.

Note: We suggest that you remove the pod from the target when you
do the following steps.

Pod Problems

Step 1: Board I/O Addresses

Take the POD out of the target and set XTAL (JP1, JP2), PWR (JP16) and
EA/WAIT (JP3) jumpers to POD. Confirm that the I/O address set in the jumpers
on the emulator board agrees with the software settings found in their
respective configuration dialog boxes. Run the DOS CONF_XA.EXE Program in
the EMUL51XA directory. This tests the POD, emulator and trace boards using
POD crystal, and PC power. Use port address 208 for the piggyback IETR.

Step 2: PWR and XTAL jumpers

Now we know the emulator, POD and trace operate correctly standalone. You
might also try running the supplied demo Programs, such as TIME.HEX. Reset
and single step with F7.

The POD-51XA/G3/I must see the /EA pulled to VDD on reset; in other words it
must start up in single chip mode. If your target is a ROM-less design, use the
POD-51XA/G3/E with /EA pulled low on RESET.

Now reposition the XTAL (JP1, JP2) and PWR (JP16) and EA/WAIT (JP3)
jumpers to target position and connect the pod to your target board. Pull
Buswidth (JP4). Open a Data window to address 0 and poke on-chip RAM. If
not successful, check the XTAL1 TARGET POD crystal jumper pin for square
wave if using an external clock, or XTAL1 and XTAL2 for square wave using the
on-chip oscillator. If nothing is present, either the target crystal circuit is
inoperative or the PLCC connector is open, shorted, or not seated properly into
the target socket. Continuity checks can ring out these pin connections.

The other possibility is no VDD to the POD. This would point to openings in the
PLCC adapter.

Step 3: Check Hardware Configuration

Double-check that the POD jumpers agree with the External Address Bus
Configuration in the Hardware Configuration screen. This would most likely
show up as incorrect trace synchronization.

EMUL51XA™-PC Chapter 11: Troubleshooting

132 Copyright © 1998 ICE Technology

Step 4: NOP Tests

Note: See Chapter 12 for further examples.

With emulation RAM mapped to the emulator (Configuration/Memory Map),
open a Data window to address 0x000, with address space set to INT CODE.
Enter a valid PSW, such as 8f00, and at address 2 a reset PC value of 0120.
<CTRL> F2 Reset should now open your Program window to address 0x120.
Now select the Program window and in-line assemble some NOPs and a return,
JMP0120. Step F7 should move through the NOPs and take the return branch.
F9 Go should light up the green POD run light. F9 again will break the program.

The trace, if installed, will show the NOP loop over and over again by moving
the elevator box up the trace display screen. Clicking on an address in the
Program window will set a breakpoint here.

Step 5: Single Steps, Resets, or Runs Briefly Then Halts

Should the Program window single-step but not run, check that the Trace
Setup screen shows that is installed (if present). If you have a hardware
watchdog circuit separate from the XA chip itself, this must be disabled (might
be indicated by a near-solid red Reset LED). One way is to disable the Reset
line to the POD by removing jumper J20/Reset. Another is to cut a trace or use
a DIP Isolator socket.

Check the Hardware Configuration screen to verify you have checked
Watchdog disable. If not, then your program will continue to reset when
stepping. Final production code can enable the watchdog; however it must have
a routine to “feed the watchdog.”

Look at your stack pointer. If close to 0080H, you risk a stack overflow exception
and your program will vector off to the address at word 000EH.

EMUL51XA™-PC Chapter 11: Troubleshooting

Copyright © 1998 ICE Technology 133

Step 6: Individually open lines

If the above NOP test still fails, and you have tested the PLCC adapter for pin to
pin shorts, then purchase a 44 pin isolator adapter and individually open lines
until you gain control of the POD (start with the XTAL pins and jumper these
back to the POD).

Trace Problems

Run the CONF_XA.EXE confidence test described in the previous section, POD
Problems. Passing this but failing to trigger correctly would probably indicate
incorrect trace setup and trigger options. Working through Chapter 12: Tutorial
can answer most questions. Additionally, Chapter 4: Internal/External Data
Trace Board, goes into the details of each trace setup menu item.

Triggers don’t work

Check the setup screen and be sure Ext trig line: Trig Inhib is checked. The
External Trigger Input at JP4 is always pulled high. Triggers are inhibited only
if some external signal holds JB4 low. If you had selected Ext trig line: Trig,
triggers would work only when the line was held low. Further discussion may be
found on page 81, “External trig line” in Chapter 4.

Data Bus Triggering not working

Triggering amounts to a match of comparators of address, data, and bus cycle
type. Triggering on data reads and writes can be particularly tricky when
variables are byte wide, because the trace always collects 16 bits of information.
Using 16-bit memory, byte writes to odd addresses - for example, requiring
masking off the low-order byte using FF00 (see page 78, Data Bus Qualifier , in
Chapter 4). Using 8-bit memory, you can mask off the upper byte of captured
trace data with 00FF. You may need to look at the captured trace data to
understand the correct data mask qualifier. You can set the filter to capture all
read/write cycles to a particular address, then look at the captured data display.

Internal and/or External Bus MUST be selected

The IETR piggyback has two check boxes, Internal Bus and External Bus.
Checking Internal Bus means that, after valid trigger match, internal bus cycles
are used to count down the Post-trigger samples: entry before stopping trace
capture. The same applies to External Bus countdown.

If neither box is selected, you will get notification of trigger found, but the trace
will continue to collect cycles and overwrite the original trigger point. The trace
would have to be stopped manually and have no useful data.

EMUL51XA™-PC Chapter 11: Troubleshooting

134 Copyright © 1998 ICE Technology

Understanding Sequential Nature of Trig1 then Trig2 then Trig3

The three trigger conditions are sequential, i.e., without an active, Trig1, trig2
and trig3 will not happen. If you wanted a condition where three or four different
events would be “ORed” together, use only Trig1 and keep selecting New.
Some developers have tried to use Trigs 1, 2, and 3 for three commonly used
trigger conditions, assuming an OR rather than a THEN condition. Trigs 1, 2,
and 3 are implemented as a State Machine - the higher numbered triggers are
NEVER considered unless Trig1 is active and fires.

Last trig event repeat count

This should not cause confusion, but it needs emphasizing. If you had both
Trig1 and Trig2 active with a repeat count of 3, the logic: If Trig1 then (Trig2 for
three times) occurs, start counting down Post Trigger Samples, then stop trace
capture.

Check both Address and Data Bus conditions

Each trigger event contains Address and Data Bus qualifiers. Leave the Data
Bus blank for opcode trigger addresses and use, if desired, for read and/or
write cycles. Both fields are not displayed simultaneously, thus you may have
left qualifiers in the Data Bus Edit window, even though you have gone on to a
new trigger Address location. You would catch this by clicking in the Data Bus
diamond for that Trig event number. Use the Delete key to clear the qualifier, if
present.

Summary

ICE Technology has helpful technical support engineers, as well as
knowledgeable sales representatives and distributors. Don’t hesitate to call
them for help.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © 1998 ICE Technology 135

Chapter 12: Tutorial

This chapter is designed to cover the basics of EMUL51XA-PC operation. You
can then go back later to review the more detailed descriptions on memory
coverage, Program performance analysis, and advanced trace features such as
Window filter mode.

The first section is directed at the hardware engineer, with in-line hand
assembly of a simple Program. We will then discuss C source level debugging
using the time.hex file located in the ..\hitech subdirectory. If your organization
divides hardware and software functions, ideally the hardware designer will use
the ICE to validate his design and then spend time with the software engineer
explaining the memory map and hardware configuration screen settings.

Note: References to "target" or "target board" mean your circuit board
which actually contains the XA-G3 part. "POD" refers to the
 in-circuit emulator pod with the bondout chip.

Hardware Issues

Is the Target Board On?

1) As soon as the equipment is installed, run the confidence test described in
Chapter 1: Software User Interface. If this fails call or email your
local sales representative. You can call support at 408.626.7893 or email
technical support at support@icetech.com.

2) POWER EVERYTHING DOWN, then:

• Plug the POD into your target board. Note pin 1 (with the ---v---- notch)
orientation: looking down, the POD cable will exit to the left when pin 1 is
pointing to the on-pod crystal.

• The PLCC adapter should have a snug fit.

• The black ground wire isn't important (although designers recommend
connecting it before POD plug-in to prevent any static discharge).

• Pull JP4, BUSWIDTH, so target sets BUSWIDTH

• Pull the PWR jumper, JP16, because your target should have it's own
VDD.

Chapter 12: Tutorial EMUL51XA™-PC

136 Copyright © 1998 ICE Technology

Note: If running 3.3 VDC, in addition to removing the PWR jumper,
make changes to the IETR setup screen under Target VCC: .

• Move the 2 crystal jumpers, JP1 and JP2, from POD to TARGET
position to use your on-board target oscillator.

• Move JP20, /EA/WAIT, from POD to TARGET.

• All the P2 jumpers (next to crystal) will be on the left position for 16 bit
data bus/ 20 bit address bus operation. This setup can be complicated
for other data bus/address bus combinations, so you should review the
Headers section of the POD-51XA/G3 in Chapter 6: POD-51XA/G3/I or
Chapter 7: POD-51XA/G3/E for other size combinations.

Figure 65: POD-51XA/GE/I Hardware Configuration Screen

3) Power up the PC and then the target board. Select the XA INI Generator
icon and you will see the Hardware Configuration screen above. This
screen must match your target design (see Chapter 1, "Quickstart
Installation"). A Send Command box usually means the POD is not seeing a
target oscillator or VDD (see Chapter 11, or call for help if needed).

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © 1998 ICE Technology 137

Exercising Memory

By default, all memory, data and code is mapped to emulator SRAM. Try
opening three new data windows from the Window menu. These will land on
top of each other, so reposition them where you wish for proper viewing.

By default, these windows look at internal data RAM space. Change one to
Shadow space and the other to Internal Code space by clicking on the Data
window with the right mouse button, then select Address space with the left
mouse button.

Code space is self-explanatory. Display this as 16-bit hex for the moment by
again using the right mouse button and selecting Display as..

The Internal Data window may stay as is. Enter a few values here by selecting
a word and simply typing over the existing value. Internal data RAM on the G3
runs from 0 to 1FF.

Note: After 1FF, this window defaults to EXTERNAL data memory.

The Shadow window lets you see external memory writes while the target
system is running (updates 4x sec - requires IETR).

Figure 66: Data and Special Register Windows

Chapter 12: Tutorial EMUL51XA™-PC

138 Copyright © 1998 ICE Technology

Open the Special Register window. With the right-click mouse, add the SFR
registers or bits of interest.

Another way to look at SFR space together with a detailed bit usage description
is from the View/Edit menu (Default CPU Symbols). This .reg file is loaded
manually under the File menu by choosing Load Default Symbols.., or
automated at emulator startup by checking the Load Default Symbols box in
the Config/Miscellaneous screen.

Figure 67: View Bits

Warning: You can set PCON.0 IDL, but should not set PCON.1PD from these windows.
Power Down turns off the bondout clock and the emulator, then fails to
communicate with the POD. The user Program can enter Power Down, but
the CPU must be out of Power Down to break emulation (through reset or
external interrupts)

Figure 68: Registers Window

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © 1998 ICE Technology 139

Open the CPU Register window from the Window menu, sizing it to cover all
the registers, and position it on the screen above. Change from bank 0 to bank
1 by typing over the BANK register with 1. Then enter data values in any of
register R0 to R6. Observe that changing back to bank 0 also changes these Rx
values. Generally you don't want to change PC, PSW, SSP, USP, and Rx
values here, but use this window for observation purposes only. The Program
will manipulate these values.

Hand-Assemble Some Simple Program

Go into the INT CODE DATA window at location 0 (<CTRL>A), and enter the reset
PSW of 8F00. The RESET Program counter for the EMUL51XA-PC is at
location 2. Enter 120 here. Now open the Program window (Window menu)
and click on the Reset toolbar, or press <CTRL>F2. This should set the cursor to
120. Select the middle of this line with the mouse and start entering assembler
mnemonics:

NOP

NOP

NOP

NOP

JMP 0120

Step the Program with F7. Click on a NOP and use F4 Go to Cursor for temporary
software breakpoints. If you develop some useful test routines this way, save
them under the File menu as .HEX files.

Clicking on the left address sets a permanent software breakpoint.

Note: Customers setting a breakpoint normally use a software
breakpoint. We suggest using a hardware breakpoint only when
your code is in PROM or EPROM.

Explore the Run and Breakpoint menus on your own.

Note: The Reset and Go option is not implemented.

Chapter 12: Tutorial EMUL51XA™-PC

140 Copyright © 1998 ICE Technology

Hardware breaks only! permits breaking even when code memory has been
mapped to the target Eprom/Flash. This results in a skid of one opcode.

Break on external access allows breakpoints on data reads and writes,
however only to 16-byte resolution (for example, an address of 200H would
break on 200 through 20F, or 20XH where X is Don't Care). Due to the
instruction pipeline, the break address will skid by the prefetched word count.

Note: The IETR 128/512 also allows breaking at a unique external
address and data bus value using the trace trigger setup and
choosing Break Emulation? Yes, on trig or Yes, on trace stop.

Figure 69: Break on External Data Access

Testing Target Data RAM
Assuming you are using the external data bus, open another Data window and
select Address space.. EXT DATA. By default, this looks at Emulator SRAM.
Change this to target under Config/Memory map.. by checking the box under
Map to Target, then in the blank space on the immediate right Click and enter
an appropriate address range (for example, 0-FFFF).

Note: If you need to change your setup, uncheck the box, select OK,
then recheck the box and enter the corrected address range.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © 1998 ICE Technology 141

You might use the Fill command to write 00 to the entire memory and observe
any memory read back error messages.

If you see any error messages, start looking for shorts / opens / missing strobe
lines, etc. Do not exclude checking the PGA to PLCC adapter.

Software Issues

High-Level C-Source Debugging

You should now be able to peek and poke into all the various data spaces, SFR,
internal code, and on-chip and external data memory. The rest is relatively easy,
and no different than running Borland or Microsoft C debuggers on a PC.

First verify that you have opened a Source window from the Windows menu.
The Nohau HLD interface uses separate Program/Disassembly windows and
Source windows; only one of each need be open at any time.

Note: Actual addresses may change with later versions of time.hex.

Now load the time.hex Program, found under ..\hitech. If you have selected the
Source window as active window (CTRL F6 or mouse-click in this screen), F7, F8,
and other Run menu options will operate on the C source line level. Selecting
the Program window, however, will show the Step at the assembler opcode
level. No C source statements? Check your Config/Paths setup. The debugger
looks for .C files from the default load directory but also multiple source
directories separated by semicolons as shown in Figure 70.

Chapter 12: Tutorial EMUL51XA™-PC

142 Copyright © ICE Technology

Figure 70: Paths Configuration

WATCH, INSPECT, and EVALUATE C Source Windows

Step the C source with F7, using F8 to Step Over C function calls. Temporary
breakpoints are set by clicking on an executable C statement and using F4, Go
to Cursor.

Use the temporary breakpoint to stop in the timer0 interrupt function called
pitr_int(). In the Source window, use your right mouse button to select
Functions, then click on pitr_int(). Now select a statement such as ticks++ with
the mouse and simply use F4 to execute to this point.

Similarly, this function contains a structure called timer. Under the View / Edit
menu you will notice CTRL-E, I, and W hot keys being used to Evaluate a C
expression, Inspect arrays and structures, and Add a Watch point. Selecting
ticks in the Source window with the mouse and CTRL W adds this to a Watch
window. Individual timer structure members may be selected by pointing the
mouse on the member side of the structure name. Try adding the seconds
member timer.sec to the Watch window.

Now step through ticks++ with F7. The Watch window should show ticks
incremented by 1.

Another useful window is Inspect. This is the default window type if you double
click on a variable. Open Inspect windows for the structure "timer", and the
string "show" by double-clicking.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © ICE Technology 143

Figure 71: HLD Windows

Chapter 12: Tutorial EMUL51XA™-PC

144 Copyright © ICE Technology

Editing a C Variable
Use the CTRL E Evaluate option after highlighting a variable to change, for
example, timer.sec. Change this expression to timer.sec = 23. Note this
window accepts any number, such as 1000 for example, returning 0x3E8 just as
with a HEX calculator.

C Call Stack
Lastly, with function calls you might want to see the nesting order. This window,
found under View/Edit, shows all nested function calls and associated
parameters. Opening this in the check_timer() function will show the function
timer_func () and main ().

Real-time Debugging with the Trace (IETR 128/512)
Hardware engineers who have used logic analyzers should have little trouble
with our Trace Setup screen. Software engineers, however, may be new to
viewing real-time instruction history. Using the time.hex Program, lets look at a
few examples of how the trace might be used with the POD-51XA/G3/I.

First, by default the trace always records all bus address activity when you run
your Program. After 131000 (or 524000) records, the circular buffer overflows
and new instructions overwrite the old. Lets look at this.

After loading the ..\emul51xa\hitech\time.hex, set a software breakpoint on C
source line 102, the start of the timer_func function, by clicking once with the
mouse. Use F9 to start the Program. It immediately breaks, and the trace
displays some 2860 CPU clock cycles: -2860 to -1 (the most recent opcode
fetch). As you move into negative (-) trace frame you return all the way to the
startup instruction at -2857, JMP start.

Note that with multiple word opcodes, you see word fetch cycles oo2 until
completed. Read cycles R2 and write cycles W2 are also displayed. Hardware
engineers may be interested in the internal code bus and seeing the start of
instruction cycles that use “s.” This will require showing the internal bus in the
trace submenu. Software engineers will prefer the compress option showing
actual execute code and read/write activity.

Another useful exercise is to select Synchronize Program window. This
generates a cursor that moves in the Source and Program windows as you
scroll backwards in the trace buffer. Using the trace in this very limited mode
can save man weeks of debugging time, where you run real time to a breakpoint
and then at your leisure go back over the previous 131000 (or 524000) records
that preceded it.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © ICE Technology 145

Figure 72: Synchronize to Source Window

Filtering

Note: Line numbers and addresses may change with later versions of
time.hex..

Even 131000 (or 524000) records can disappear in a hurry if you are in a loop.
Filtering lets us see only the routines or bus cycles of interest. Try filtering out
everything except the pitr_int routine by entering the Trace / Setup menu,
checking Filter, Address, and then New. For the starting address, use the
function name pitr_int and for the end address use #71 or #TIME#71 indicating
C line number 71 in module TIME (note compiler generated labels often default
to upper case).

Now restart the trace using using F10 while the target is still running, or use F9
GO if the Program is stopped. Right away you will notice the trace frame count
growing only when running through this interrupt. If nothing gets captured make

Chapter 12: Tutorial EMUL51XA™-PC

146 Copyright © ICE Technology

sure you are running (the green POD led is on). To stop trace capture manually,
use F10. Observe that only the pitr_int() code is present in the buffer.

Figure 73: Filtering

Timing
Filtering can also be useful in timing events. In the TIME Program, a 1KHZ
interrupt is generated with timer0 overflow, calling pitr_int() and incrementing
the TICKS counter. After 1000 counts the timer.sec word is incremented, tested
for exceeding 59, and so on.

Go back into the Trace Setup screen and change the filter end address to
pitr_int() also, so we only capture the initial fetch instruction of the interrupt.
Restart the trace capture with F10 or hit F9 Go if you have stopped the
Program. Stopping the trace with F10, you will notice the only bus activity
captured is at address 142, the start of pitr_int(). This is exactly what we want.
Now reenter the Trace menu and select Show timestamp, Convert cycles,
and Relative timestamp.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © ICE Technology 147

Figure 74: Relative Timestamping

Observe the relative interval between pitr_int() calls is about 1 ms.

Note: A 40-bit counter of CPU clocks uses the crystal clock entered on
the trace setup screen to convert cycles to seconds. In this
instance, we assume you are using the 20 MHz POD crystal.

You may find it easier to measure the interval between writes to ticks in external
SRAM. Here, you would set Data mode: Data and enter ticks as Start and End
address, selecting Cycles: Data write.

Chapter 12: Tutorial EMUL51XA™-PC

148 Copyright © ICE Technology

Trace Trigger
If your debug style is to go to breakpoints, then you can scroll back through the
trace to see the previous execution thread. Suppose you want to set a
breakpoint "on the fly" or examine code in a particular routine without stopping
your realtime application. Let's see how this is done with the time.hex Program.

Start the application using F9. Now enter the Trace/Setup screen, disable the
filter <No>, and set Trig event 1 to <Yes> New with check_timer() in both Start
and End addresses (use tab key to duplicate start address) and Opode fetch
cycle type (Note Data mode: Opcode setting in Figure 75.)

Figure 75: Trace Triggering

Re-initialize the trace logic by stopping trace (F10) and then restarting (F10). If
the captured frame count displays -67070,64000, this tells you 67070 address
bus cycles before the check_timer() function were captured and 64000 frame
after starting this routine were captured (the post trigger frames will differ in your
setup, matching the number in the Post trigger samples entry).

Setting the Last trig repeat count to 10 would mean 10 iterations through this
routine before triggering. You can add multiple ORed address ranges to each
trigger by continuing to select New. For example, on Trig event 1 select New
and add another function such as pitr_int(). Now, either check_timer or
pitr_int function execution would cause the trace to trigger and stop capturing
data when the Post trigger samples entry has reached 0.

EMUL51XA™-PC Chapter 12: Tutorial

Copyright © ICE Technology 149

Trig event 2 and Trig event 3 function just like Trig event 1, EXCEPT you must
specify previous triggers for them to activate. This then implements a state
machine, i.e., Trig 1 THEN trig 2 THEN trig 3, or Trig 1 THEN Trig 2. The Last
trig event repeat count means you have one repeat counter, and it applies to
the last of the defined triggers.

On-the-Fly Breakpoints
After specifying the trigger condition, select Break emulation, Yes, on trig or
trace stop (both require an active trigger event). If trace is busy, stop it with
F10, then restart with F10 to reinitialize its logic for the new setup. The Program
will now halt either right after the trigger or when the post trigger count
decrements to 0.

CONGRATULATIONS on successfully completing this tutorial! Less frequently
used features can be found in Chapters 1 and 4.

EMUL51XA™-PC Index

Copyright © ICE Technology 151

Index

A
Add .., 36
Add a watch point .., 30
Address

ranges, 14
space.., 35

Address.., 34, 35
Animate .., 30
Animation, 43
Archimedes, 130
Arrange Icons, 37
At .., 32

B
Base files ext, Memory Coverage Report, 26
Basic Skills, 1
Benchmarking Using Time stamp, 70
bin

Activating, deactivating, editing, 21
Black wire, 84
Block move.., 35
Board installed, 61
Bondout

controller, 84
Microcontroller, 87, 95, 105, 117

Break
Emulation, 31
Emulation? Box, 79

Break now!, 32
Break on external data access, 32, 140
Breakpoint

Deactivating, 42
Deleting, 42
On the fly, 149
Setting, 42

Breakpoints, 149
Bus Cycle Trace Annotation, 67
Buswidth, 15

Header, 90
Buswidth Header, 98

C
C box, 40
C call stack, 29, 144

window, 44
C source, 42
C syntax, 40, 45
C Variable

Editing, 144
Call stack .., 34
Cascade windows, 37

Clipboard, copy to, 29
Clock, 15
Close, 37
Code window, 35, 49
Color

Scheme field, 19
Setup dialog box, 19

Color .., 18, 33
Compress/Uncompress, 66
Confidence Test, 6
Controller, bondout, 84
Convert cycles to time, 71
Coverage

Detailed report, 26
Report, 24

Current program counter, 41
Custom Display Format, 41

D
Data and Special Register Window, 137
Data Bus Qualifier Entry, 78
Data mode, 77
Data RAM, 140
Default CPU symbols, 29
default directory, 11
Delete All, 32
Detailed Coverage Reports, 26
Dialog Boxes, 37
Disable all, 32
Disassembled instructions, 42
Display as.., 35
Duplicate Resources, 84

E
Edit

Coverage Address Ranges, 22
Edit .., 35, 36
Editing the Trigger Conditions, 76
emulation memory, 13, 88, 96
emulator

Address bits, 58
Hardware, 57
installing, 3, 58
Internal files:, 11
ISA bus address, 15
Setting the jumpers, 58

Emulator Hardware .., 33
Emulator Macro, 47

Example, 50
Setup, 47
Writing, 47, 48

Evaluate, 29
window, 44

Index EMUL51XA™-PC

152 Copyright © ICE Technology

Exit, 29, 52
External Bus, 68
External trig line, 81

F
F10 key, 63
Fill.., 35
Filter field, 63
Filter Mode

Normal, 74
Window, 76

Filtering, 145
Find

frame number, 65
trig point, 66

Full Reset, 33
Function, 33, 34, 56

G
Go, 31

forever, 31
to cursor, 31
to return address, 31
to.., 31

H
Hardware

breakpoints.., 31
breaks only, 32
Configuration screen, 136
Issues, 135

Hardware breaks only, 140
Headers, 89, 97

12/16 bit, 12 bit, 91, 99
A12-A19, 91, 99
Buswidth, 90, 98
Clock, 89, 97
EA/Wait, 90, 98
I/O port, 90
Memory Configuration, 98
PWR, 89, 97
RAM Select, 91, 99
Reset, 90
RXD, 89, 97
Trace, 90, 98

Hexadecimal address, 41
High address, 17
HI-TECH HPDXA, 129
HIWARE, 130
HLD Window, 143
Hot Keys, 27

I
I/O Address, 72

I/O Addresses, 131
Icons

arrange, 37
emulator, 9

Indicator Lights, 83
Ready, 83
Reset, 83
Run, 83

Info .., 37
INI_XA utility, 5
Inspect .., 30, 44
Inspect window, 44
Internal Bus, 68
Internal bus/External bus, 81
Internal Code Memory, 15
Internal/External Data Trace Board (IETR), 17

J
Jumpers

Positions, 89, 97
PWR, 131
XTAL, 131

L
Last trig event repeat count, 80
Last trigger repeat count, 74
Load code .., 27
Load default symbols .., 27
Load path, 11

M
MDI, 51
Memory Coverage

Window, 23
Memory Coverage, 33
Memory map .., 13, 33
Menus, 27

Config, 9
Microsoft Visual Basic, 47
Microsoft Windows, 1
Miscellaneous

setup, 16
Miscellaneous .., 33
Miscellaneous data, 69
Miss bin, 20
Module, 34
MOVC, 79
Multiple Document Interface Standard, 1

N
Next window, 37
NOP Tests, 132
Normal filtering mode, 73, 74

EMUL51XA™-PC Index

Copyright © ICE Technology 153

O
Object files, linked, 12
Origin (at program counter), 34
Original Address, 35
Override at Reset, 18
Overwrite box, 26

P
Parameters in Hex, 36
Paths .., 11, 33
Performance Analysis

Adding a bin, 21
Control options, 20
Miss bin, 20

Philips microcontrollers, 1
pin pairs, 58
Pipeline Decoding, 63
Pod board

Dimensions, 96
POD-51XA/G3/E, 13, 95
POD-51XA/G3/I, 13, 87
Pods

Board dimensions, 88
Features and Limitations, 83, 92, 100
installing, 4

Post trigger samples, 73, 79, 80
PP Analyzer, 20, 33
Preferences, 29
Program window, 23
Project name .., 32
projects

.ini file, 10

.pro file, 10
adding, 10
creating, 10
deleting, 10
directories, 12

PWR Jumper, 131

R
READY, 56
Real-time Debugging, 144
Recording per clock, 80
Relative Time stamp, 71, 147
Remove .., 36
Remove Symbols, 28
Repaint, 37
Reset Chip and Break, 31
Reset Chip and Go, 31
Result files ext. field, 26

S
Save code as .., 27
Save trace as text, 66

Search, 30
address, 65
Next, 30
next address, 66
Previous, 30
previous address, 66

Select window class, 19
Selective Recording, 75
Set new PC value at cursor, 34
Setup .., 32, 42
Show function, 36
Show Load Info, 28
Show pod pins, 70
Show time stamp, 70
Single opcode, 43
Single step, 43
Software

configuring, 5
installing, 9
issues, 141

Source window, 24
Step into, 30
Step over, 30
Subroutine, 50
Summary Coverage Report, 25
Synchronize program window, 71
System Requirements, 3

T
Target VCC, 81
Tasking, 130
Tile windows, 37
Timing, 146
Title Bar, 11
Toggle, 31

breakpoint, 34
help line, 37

Tool Bar, 46
Trace

Buffer, 63
Bus cycle, 64
Bus width, 64
Header, 98
Headers, 90
Memory, 72
Menu, 65
Pipeline effects, 64
Setup, 72
Setup dialog box, 63, 72
Time stamp, 70
Toggling, 72
Trigger, 73, 148
Window, 64

Trace .., 33, 72
Trace Board

Inputs and controls, 62
installing, 4, 61

Index EMUL51XA™-PC

154 Copyright © ICE Technology

power jumper, 61
rev C, rev D, 61

Trace Search Dialog Box, 65
Tracing, 63
Trigger Memory, 73
Triggers, 64
Tutorial, 135

U
User defined symbols, 29
User load modules, 11

V
View

assembly code, 35
source window, 34

Visual Basic
Options, 48

W
WATCH, INSPECT, and EVALUATE C Source, 142
Window filtering mode, 73, 76
Windows

Cascade, 37
HLD, 143
Next, 37
Tile, 37
Watch, 44

X
XAC Command Line Compiler, 130
XTAL Jumper, 131

Z
Zero time at cursor, 66
Zoom, 37

