
Nohau Corporation Campbell, California (888) 886-6428 (408) 866-1820 www.nohau.com sales@nohau.com

The Development Cycle
The typical microprocessor development
project begins with a C compiler produc-
ing an object file from your source code.
This object code will contain the physical
addresses and some debugging informa-
tion. This object code can be executed and
debugged using a software simulator, a
target monitor or an in-circuit emulator.

The program is debugged by setting
breakpoints to halt execution at selected
instruction locations. When execution is
halted, the memory and register contents
are examined for clues to help find bugs.

The debugged object code is re-compiled
removing the debug information and
producing a file in a standard format such
as Intel HEX. This file will be stored in
the final product’s nonvolatile memory
such as EPROM or FLASH.

Why do we need emulators ?
Software debuggers and monitors offer
economical debugging capabilities
sufficient for many designs. There are
some cases where an emulator is needed
to resolve difficult to find bugs. In all
cases an emulator will pay for itself by
providing you with decreased debugging
time, ease of system integration, increase
in reliability and better testing procedures.
Often, designers use both an emulator and
software debugger during different project
stages, especially in larger design teams.

Software simulators and debuggers offer
only a few features beyond breakpoints
such as displaying port contents and code
coverage. There are no means to detect
events or conditions and then act on them,
and certainly not in real-time. There are
also no means to record controller bus
cycles to determine what actually hap-
pened to the program flow. If your
microcontroller has on-board EPROM or
FLASH memory, and is running in single

The Software Engineer’s Guide to In-Circuit Emulation
How to increase your debugging skills!

chip mode: only an emulator can debug
this scenario without serious intrusion and
consumption of controller resources.

In-circuit emulators can easily do these
tasks and more for you. Emulators are the
bridge between software and hardware. At
some point in time, you have to run your
program in real hardware. An emulator will
easily help you accomplish this. This
article examines how emulators will help
you with your debugging sessions.

What exactly is an emulator?
“An emulator is a computer that engineers
use to design other computers” is the most
basic definition I have thought of. Emula-
tors replace the microcontroller in your
target system. The emulator behaves
exactly like the processor with the added
benefit of allowing you to view data and
code inside the computer and control the
running of the CPU. Emulators are a cost
effective method of debugging embedded
software. Shown below is the new Nohau
EMUL51XA-PC emulator.

Internal and External Modes
Internal or single-chip mode is when
program and data memory is located in the
controller chip in the form of FLASH or
EPROM. The address and data busses are
not available to the user. These busses are
then available as I/O ports. All program
execution occurs in the internal ROM. This
mode requires a bondout or Hooks chip for
effective emulation.

External mode is when the program
memory and perhaps some data memory is
located externally to the controller. The
address and data busses are available to
access this memory. Production, bondout
or Hooks chips are effective for this mode.
The address and data busses may not be
used as general I/O ports. Nohau emula-
tors use all three types of controllers for
effective debugging.

Bondout, Hooks and Standard
Production Chips
These terms refer to the emulation proces-
sor used by the emulator to replace your
target controller. Bondout and Hooks
chips allow single chip emulation. A
bondout chip has extra pins connected to
internal nodes. The Philips XA uses a
bondout chip for emulation. Philips 8051
products use Hooks emulation. The Nohau
EMUL51XA-PC and the EMUL51 provide
support for both.

 Hooks chips take advantage of unused
cycle times on various pins to provide the
address and data busses. Hooks chips are
used with the Philips 8051 family for both
internal and external modes. Interestingly,
these chips are also standard production
chips.

Many Philips 8051 production chips have
Hooks support built in. This provides very
accurate emulation since the production
and emulation chips are exactly the same.
Shown below is one model of Nohau
Hooks pod and the HSP box.

Nohau Corporation
51 East Campbell Avenue
Campbell, California 95008

© 2002 Nohau Corp
Version 1.2

Nohau Corporation Campbell, California (888) 886-6428 (408) 866-1820 www.nohau.com sales@nohau.com

Getting the Hardware Working
Simulators are great, but they can not take
all the variables into account. The simula-
tor designer has to think of everything:
usually those items that come up only after
the hardware is constructed. Items such as
capacitance, timing, inductance, and chip
versions. These are more important as CPU
speeds increase.

Target monitors are considerably better in
that they run on real hardware. But the
target system must be a complete working
system in order to get the monitor kernel to
run. Not so with an emulator. An emulator
will run with no hardware at all or incom-
plete sections. A target monitor can be
installed in the final target ready to be
activated at any time for debugging. This
is useful for test and repair purposes.

Emulators have all the features of software
debuggers and monitors plus these
benefits:

No target or CPU resources used
Monitor kernels typically need about 10K
ROM and 10-20 bytes RAM and a free
communication port. A good emulator
uses none of these. The emulator should
be invisible to the target.

Hardware Breakpoints
A software breakpoint is created by
inserting a 2 byte TRAP instruction which
will divert normal program flow to the
debugger. The program may crash if the
program counter lands on the second byte.
Nohau hardware breakpoints use compara-
tors to detect accesses to a location and
no code memory contents are modified.

Breaks on regions need hardware
breakpoints. Software breaks are still
useful and Nohau provides both types.

Software breakpoints are useless with
external ROM memory since a TRAP can
not be inserted. The ROM can be mapped
into emulation memory to solve this issue
or use hardware breakpoints.

Trace Memory
The Trace records each processor cycle
along with a timestamp and optionally
external signal levels. The trace can record
all code fetches and will distinguish
between instructions that are cancelled in
the pipeline and those successfully
executed. The trace can be enabled by the
triggers. This results in filtering where only
those cycles of interest are recorded and
others are discarded. Simulators and
monitors do not posses trace memory. The
screen below shows some features of
Nohau emulators.

Conditional Triggers
These are extremely powerful and easy to
use. They allow you to specify an action
when some event happens. The trigger
can include an address, data, clock cycles
and external signals. These can trigger a
break, start/stop the trace capture, record a
timestamp or many other things deter-
mined by the emulator’s capabilities. This
powerful tool is found only in emulators.

Actual Memory and I/O Ports
These can be viewed from real hardware
parts and not simply a software simulation.
It is possible to wire your favorite periph-
eral chip to the bottom of the emulator pod

and access it. Accurate simulation
depends on all the nuances of complex
peripherals entered correctly.

Often, it seems that some problems only
develop when the actual hardware is used.
An emulator will help get your develop-
ment finished faster by getting you to this
point directly.

Since the emulator has its own internal
RAM which can be substituted for ROM,
you can debug and modify the program
code and data easily in ROM systems.

In the same fashion, memory not yet
installed on the target can be substituted
by the emulator. The size and address of
this RAM is selectable.

Performance Analysis in Hardware
A debugger can only simulate this and it
does a good job. The emulator goes one
step further by doing the analysis on the
real hardware increasing accuracy. Once
again, using the actual hardware will
show problems that may not be evident in
software simulation. Spurious interrupts
and other functions that unexpectedly
consume CPU resources can cause serious
performance problems and can be difficult
to find. Performance Analysis can easily
find such problems.

Connecting to the Target System
This is easy. Most issues will be handled
by the board designer in conjunction with
your emulator representative. Connection
to the target is a two step process.

First, the adaptation method must be
chosen. Solder-down and socket methods
are preferred. Clip-over adapters are both
expensive and unreliable. The emulator
manufacturer should be involved at the
start of the board design.
Second, the software and jumper settings
on the emulator must be correctly set to
match the target board and the software
initialization routines. This is easy to do
and here is where good technical support
counts. Usually the default settings work.

To connect the Nohau EMUL51XA to the
Philips XTEND-G3 evaluation board: the
emulator is plugged into the G3 socket and
memory mapped in the Seehau software
with simple mouse clicks. Load the code
and it immediately goes into operation!

Conclusion
This article has provided information
about In-Circuit Emulators and the benefits
that accrue to you, the designer.

